R

M
~ UNDERSTANDIN
YOUR svecnus

BASIC AND MACHINE CODE PROGRAMMING

DR.IAN LOGAN

o A\ iy ot i

-
e

Y
: xs”ectmm
ZX Spectrum :

CAPS LOCK TRUE VIDEO INV. VIDEO <l

EDIT c \Y, y

{ o | & .
EEEw
8 B R P

UNDERSTANDING
YOUR SPECTRUM

BASIC AND MACHINE CODE PROGRAMMING

by

Dr.lan Logan

Lincoln, England 1982

|

Melbourne House Publishers

'!l

dl
<
u

Published in the United Kingdom by:
Melbourne House (Publishers) Ltd.,
Glebe Cottage, Glebe House,

Station Road, Cheddington,

Leighton Buzzard, Bedforshire, LU7 7NA,
ISBN O 86161 111 X

Published in Australia by:

Melbourne House (Australia) Pty. Ltd.,

Suite &4, 75 Palmerston Crescent,

South Melbourne, Victoria, 3205,

National Library of Australia Card Number and
ISBN 0 86759 114 5

Published in the United States of America by:
Melbourne House Software Inc.,

347 Reedwood Drive,

Nashville NT 37217.

Copyright (c) 1982 by Dr. Ian Logan

All rights reserved. This book is copyright. No part of this book
may be copied or stored by any means whatsoever whether mechanical
or electronic, except for private or study use as defined in the

Copyright Act. All enquiries should be addressed to the publishers

Printed in Hong Kong by Colorcraft Ltd.

Preface

It is almost impossible to believe that within the space of only 2% years
SINCLAIR RESEARCH of CAMBRIDGE has manufactured and sold about
500,000 microcomputers. It was in the spring of 1980 that the revolutionary
ZX80 was launched. The machine was an instant success as it was the first
really cheap microcomputer for the hobbyist. However, within only one year
Clive Sinclair and his team were ready with the ZX81. This model was a great
improvement on the ZX80 and took the development of a microcomputer
with a low resolution, black and white display to a stage that is never likely to
be attained again.

But now we have the ZX SPECTRUM. This machine has been developed
directly from the ZX80 and ZX81, and by so doing Sinclair Research has
produced a microcomputer with a superb High Resolution and Colour display.

It is, however, with some regret that the ZX80 and ZX81 have been
superseded as they were both beautiful machines. They had a simplicity of
operation that made them a pleasure to program. This does not mean the
SPECTRUM is a difficult machine to use but | do feel that in order to get the
‘best’ from the new machine it will now take longer to write ‘finished’ and
‘polished’ programs.

This book has been written so that the reader can ‘go beyond’ the two fine
manuals that come with the actual machine, and thereby develop a deeper
‘understanding’ of both the SPECTRUM and microcomputer systems in
general.,

| wish to acknowledge the help given to me by:

Alfred Milgrom

The president of Melbourne House (Publishers) who has such a keen interest
in microcomputing and who has done a great deal to advance the ‘Sinclair’
machines world-wide.

Dr. Frank O'Hara
My co-author on the ‘Sinclair ZX81 ROM Disassembly: Part B’ from whom |

have learnt so much about the ‘calculator routines’.

Nigel Searle
The head of the computer division of Sinclair Research who kindly sent me a
SPECTRUM in June 1982.

And my wife Liz and my two daughters — Jackie and Carolyn, who have
had to endure the writing of this book.

Contents

Preface

Chapters

1. The SPECTRUM microcomputer system

The BASIC commands and functions

The Z80 microprocessor

The mathematics of machine code programming
The Z80 machine code instruction set
Demonstration machine code programs

An outline of the 16K monitor program

Using the monitor program’s subroutines

©NO O AW N

Appendices
i. Tables of Z80 machine code instructions
ii. DECIMAL-HEXADECIMAL conversion tables
iii. Currently available machine code handling programs
iv. SPECTRUM ‘bugs’

pages

22
47
60
/1]
110
135
159

180
186
188
189

1. UNDERSTANDING — The SPECTRUM microcomputer system

1.1 Making a start

‘It is always fun to dip into a book, opening it here . . ., and there . . .; but
computers are the most logical of machines and everyone trying to improve
their ‘understanding’ should start ‘here’ — at the beginning.

1.2 Three views of the machine

It is possible to describe any microcomputer system by taking three different
views of the system.

The first is an overall ‘system’ view which will encompass the actual
micrccomputer and all its attendant peripherals. The second view is of the
‘physical’ parts of the microcomputer itself.

The third view is obtained by looking at the ‘logical” workings of the
microcomputer system,

The ‘system’ view is probably already familiar to most readers but it
is included as there will be some people who are unfamiliar with the
SPECTRUM system.

1.3 The ‘system’ view

The SPECTRUM microcomputer itself is a black plastic box of width 233
mm., depth 144 mm. and height 30 mm. On the top surface are the forty
rubber keys that form the keyboard. Along the rear edge are, from left to
right, the output socket that connects to the T.V. aerial input, the input
socket that connects to the cassette player output, the output socket that
connects to. the cassette player input, the expansion port that may be joined
to the printer, to the microdrives and other input/output devices, and finally
the power socket.

The main printed circuit board with the Z80 microprocessor and the other
electronic components, including the single loudspeaker, is found within the
black box but separate from the keyboard. The main board and the keyboard
are linked by two ribbon cables.

The system can be shown diagrammatically — see diagram 1.1.

Although the system will ‘run’ without the T.V. display it is not the
manufacturer’s intention that this be done as all the ‘system reports’ appear
on the T.V. display and cannot easily be made to appear on the printer, or
any other peripheral.

1.4 The ‘physical’ view

The main board of the SPECTRUM can be easily inspected by first removing
the five retaining screws on the under surface of the black box and then

EXTENSION CONNECTOR
for: printer,

CASSETTE . .
microdrives,
PLAYER Input/output
switches.
Qo
[T 11
6 0 ©6 0 00 POWER
INPUT
T.V. DISPLAY = ‘ R
L
l_____' —— -
i
MAIN —_— LOUD-
BOARD L | __[I__"; |- SPEAKER
TR TG
L _______ 1)

V' S v
oopbopooooad
goopgQooogpno

YBOARD —— -
KEYB DoooOpoO@o
Jdooocopo g

Diagram 1.1 The SPECTRUM microcomputer system (not to scale)

8

lifting up the upper half of the box. Care must be taken as the upper part of
the box contains the keyboard and it is linked to the main board by two
rather fragile ribbon cables. These cables may be pulled out of their sockets
but it is not the author’s advice that this be done, unless necessary, as the
cables may be damaged. The use of two equal length pencils as ‘stays’ can also
be helpful.

The major components found on the main board are shown in diagram
1.2.

Each of the major components will now be discussed in turn:

The Z80 microprocessor

This silicon chip is the most important of all the components. It is a ‘micro-
processor’ and as such it is a machine capable of acting as a ‘computer’ which
in a widely accepted way is ‘a machine capable of following a stored pro-
gram’. The program for a Z80 microprocessor will always be in the form of a
set of Z80 machine code instructions and any associated data.

In the SPECTRUM the 280 microprocessor is ‘clocked’ at 3.5 MHz and at
that speed is capable of processing 875,000 of the more simple machine code
instructions a second. It is interesting to note that at any time that the
correct ‘power’, ‘ground’ and ‘clock’ connections are made, the microproces-
sor will be working. However the results of its work will be ‘nonsense’ unless
the microprocessor is following a sensible machine code program.

The 16K ROM (= read only memory)
The machine code program that is normally followed by the Z80 micro-
processor is supplied by Sinclair Research in a ‘read only memory’ chip
that holds 128K bits, or 16K bytes, of information.

In the “16K monitor program’ of the SPECTRUM roughly 7K is allotted to
the ‘operating system’, 8K to the BASIC interpreter and the 1K remaining to
the ‘character generator’.

The 16K of RAM (=random access memory)

In the standard 16K version of the SPECTRUM there are eight 2K byte, or
16K bit, memory chips, whereas in the 48K version there is an additional 32K
of memory.

Three of the eight memory chips form the ‘memory mapped display’ and
would normally only be used for this purpose. The fourth memory chip is
devoted to holding the attribute bytes for the 768 character areas of the
display and the system variables. A little over 8K of RAM is left free in the
16K version.

Expansion
T.V. modulator connector
Extension
Keyboard data RAM
input connections
Keyboard
PAL cassette ?ﬁzrists
encoder connections 16K RO p
X / \ \ \ Power input

| gl

K

]

T

P N
W
\

7

16K of RAM

/ Loudspeaker
Heatsink

Z80 microprocessor

SINCLAIR ULA

Diagram 1.2 The major components of the SPECTRUM'’s main board.

10

The SINCLAIR ULA (=uncommitted logic array)
This chip can be considered as being a large chip made up of many smaller

chips. In the SPECTRUM the ULA is largely concerned with the scanning of
the ‘memory mapped display area’ and the ‘attribute area’ to produce the

T.V. signal.

The PAL encoder
This chip receives the ‘colour’ information from the ULA and uses it to
prepare the required signal for the UHF modulator. The signal produced from
the modulator is nominally on channel 36 in the U.K. version of the
SPECTRUM.

In addition to these major components there are the loudspeaker, the heat
sink, the voltage regulator, the system clock, various address decoders and
buffering chips and a modest number of other minor components.

1.5 The logical view

In this view the links between the various components of the microcomputer
system are considered. These links do have a real existence — they are tracks
on the printed circuit board, or even actual wires — but it is the use to which
these links are put that has to be understood.

A Z80 microprocessor can generate an individual address for 65,5636
different memory locations (64K). The limit on the amount of memory that
can be linked to a Z80 microprocessor, in a straightforward manner, is
therefore 64K. In the standard 16K SPECTRUM only the locations with the
addresses, in decimal, from 0 to 32,767 are available to be used. Whereas in
the 48K SPECTRUM all of the addresses from 0 to 65,5635 actually address
memory locations.

In the SPECTRUM, addresses are produced in the form of 16 binary
signals. The address of location O is thereby 0000 0000 0000 0000 and that
for location 65,5635 is 1111 1111 1111 1111. The addresses are generated by
the Z80 microprocessor and are carried around the computer on an ADDRESS
BUS. There are 16 lines, or tracks, on the address bus of the SPECTRUM and
an address will be specified by considering which of the lines carry a ‘high’
voltage and which carry a ‘low’ voltage. Because an address requires 16
binary signals it can also be described in ‘two bytes’, each of eight bits.

Whereas the address bus has 16 lines, the DATA BUS of the SPECTRUM
has only eight lines. Therefore any data, whether it be a machine code in-
struction or a byte of data proper, can only be considered as being in the
decimal range of 0 to 255, or the binary range of 0000 0000 to 1111 1111.

Diagram 1.3 shows a simplified view of how the address bus and the data
bus are linked to the other major components of the SPECTRUM. The
diagram also shows how it is possible to consider the ‘ULA chip’ as viewing

1

16 line ADDRESS BUS
/

—
—
e

r
|
1 L—:]
16/48K : 280
]
|
6K l
Lower !
are ‘viewed’ /Z, l:]
from this :
side. to give L T l
the T.V. I «— «—
picture. / \
|
ey : Nugeis
8 line DATA BUS
«— o
Data output to Date input from:
cassette .player, keyboard,
ml_crodnve, cassette player,
printer. microdrive,

printer.

Diagram 1.3 The ADDRESS and DATA buses of the SPECTRUM system.

12

the 6k of memory reserved for the display ‘from the other side’ to that
viewed by the Z80 microprocessor.

As part of this ‘logical view’ of the SPECTRUM it is also appropriate to
consider the normal mode of operation of the system and discuss the ‘memory
map’.

The SPECTRUM is supplied by SINCLAIR RESEARCH with a 16K
monitor program that provides the user with an operating system and a
BASIC interpreter. It is indeed possible to leave this monitor program and
have the Z80 microprocessor execute one’s own machine code program if
desired. In normal use the operating system of the SPECTRUM does not
require any action on the part of the user and all the actions of the operating
system are said to be ‘transparent’ to the user. Therefore, it appears that
whenever the SPECTRUM s in use, it is the BASIC interpreter part of the
monitor program that is being executed. The user is able to enter immediately
BASIC program lines or execute BASIC programs. In a way of thinking, the
operating system considers the BASIC interpreter as a subroutine that is to
be ‘run’ as required; and the BASIC interpreter considers the line, or lines, of
a BASIC program as containing instructions that direct it to ‘run’ the required
subroutines of the interpreter.

Note that in no way does the Z80 microprocessor itself execute a BASIC
program but only the monitor program that is in Z80 machine code. The only
exception to this occurs when a user-written machine code program is being
executed.

The memory map of the standard 16K SPECTRUM is outlined in diagram
1.4 and each of the ‘areas’ will now be discussed briefly.

The ROM area

The 16K ROM containing the operating system, the BASIC interpreter and
the character generator occupies the locations decimal 0 to 16,383, hex.
0000-3FFF. As in any Z80 based microcomputer system, the start of the
machine code program is found at location 0.

The memory mapped display area

The 6K of memory from locations decimal 16,384 to 22,527, hex. 4000-
57FF, form the ‘high resolution’ display area. It is important to realise that
this ‘area’ is fixed by the hardware of the SPECTRUM and cannot be altered
under software control.

There is a one-to-one relationship between all the bits in this memory area
and the pixels of the T.V. display and the following calculation shows that
the number of bits in 6K of memory does equal the number of pixels of the
display.

13

LOCATION ADDRESSES

decimal hex.

SYSTEM VARIABLES

32,767 7FFF=+ -

32,600 7F58~,

User-defined graphics area

32,509 7F57—

GO SUB stack

Machine stack

spare bytes

~&-P-RAMT

UDG
“~RAMTOP

stack pointer
v p

23,734 5CB6 -

, e STKEND
Calculator stack ¢ STKBOT
Work space {WOR KSP
Editing area l‘_/E—LINE
Variables area L/VARS
BASIC program area ‘_{PROG
Channel information area /CHANS

Microdrive maps

23,652 5C00 =
23,296 5B00—=__
22,628 5800—=__
16,384 4000—= __

0 0000 _

System variables area

Printer buffer

Attribute area

Display area

ROM area

Diagram 1.4 The memory map of a 16K SPECTRUM

14

No. of bytes in 6K of memory = 1024 * 6
= 6,144

No. of bits in 6K of memory = 6,144 * 8
= 49,152

No. of pixels in a 32 column by 24 line display with 64
pixels/character = 32 %24 * 64
= 49,152

The relationship between the memory bytes and the character areas of the
T.V. display is very straightforward but does lead to confusion.

Initially, consider the T.V. display in thirds. The top third of the display,
lines 0 to 7, is produced by scanning locations decimal 16,384 to 18,431,
hex. 4000-47FF. The middle third, lines 8 to 15, by locations 18,432 to
20,479, hex. 4800-4FFF; and the bottom third of the display, lines 16 to 23,
by locations 20,480 to 22,527, hex. 5000-57FF.

Next, consider each of these 2K blocks as consisting of eight %K areas.
The first of these smaller areas in each of the three blocks contains the bits
for the top lines of the 256 characters in its third of the display, the second
area the bits for the second lines of the characters, and so on for the eight
lines of all the characters. This relationship applies to all of the 24 %K areas
in the display area.

The attribute area

The T.V. display has 768 character areas, each of which can have one of eight
PAPER colours, eight INK colours, be FLASHing or steady, and be BRIGHT
or normal.

The locations from decimal 22,528 to 23,295 hex. 5800-5AFF, are used
to hold the data that determines the current attributes for the display.

The relationship between the character areas and the attribute bytes is
uncomplicated as the bytes are scanned so as to give the appropriate value for
the characters on the top line of the T.V. display, going from left to right,
then the characters on the second line and so on down the screen. In the
attribute bytes, bits 0, 1 & 2 determine the INK colour, bits 3, 4 & 5 the
PAPER colour, bit 6 is-set for BRIGHT and reset for normal, and bit 7 is set
for FLASHing and reset for steady.

The printer buffer

The locations between decimal 23,296 and 23,551, hex. 5BO0—5BFF, are
used as a printer buffer.

15

These 256 bytes are sufficient to hold 32 characters in their high resolution
form with the first 32 bytes holding the bits for the top line of the characters,
the next 32 bytes the bits for the second line, and so on.

Note that the printed buffer can be used as a ‘work space’ if required.

The system variables

The 182 locations from decimal 23,552 to 23,733, hex. 5C00—5CB5, hold the
many different system variables of the SPECTRUM system. These system
variables will be discussed in detail as the need arises throughout the remainder
of this book.

The microdrive maps

This area of the memory begins at location decimal 23,734, hex. 5CB6, and
has only a theoretical existence in a standard SPECTRUM, that is to say that
the area is not used unless a microdrive has been fitted.

As this book is being written before the appearance of microdrives it is not
possible to discuss the microdrive maps any further. However, by making the
system variable CHANS point further ‘up’ the available memory it is possible
to reserve any amount of memory (within the limit of available RAM) for the
microdrive maps. (The use of the microdrive map area as a place to keep user-
written machine code is an interesting point.)

The channel information area

This special area of the memory starts at the location pointed to by the
system variable CHANS — itself stored in locations decimal 23,631 & 23,632,
hex. 5C4F-5C50. The area is of variable size but ends with a location holding
an end-marker ofvalue decimal 128, hex. 80.

In the standard SPECTRUM, that is a machine without any microdrives
attached, there are the input and output details for four channels. These
channels are:

Channel ‘K’ — which allows input from the keyboard and output to the
lower part of the display.

Channel ‘S’ — which does not allow any input but will allow output to
go to the upper part of the display.

Channel ‘R’ — which again will not allow any input but will allow
output to be passed to the work space. The size of the
work space is expanded as required.

Channel ‘P’ — which again will not allow any input but will allow out-
put to go to the printer.

The channel information consists, for each channel, of five bytes of data.
These bytes are the output routine address which takes two bytes, the input

16

routine address which also takes two bytes and the file name which is a single
letter code.

As there are four channels and an end-marker, the channel information
area in a standard SPECTRUM occupies the twenty one locations from
decimal 23,734 to 23,754, hex. 5CB6-5CCA.

The BASIC program area
This area of the memory holds the current program lines, if any. The size of
the area depends on just how many BASIC lines exist.

The start of the program area is always given by the value held in the
system variable PROG, which itself occupies the locations decimal 23,635 &
23,636, hex. 5C53-5CH4.

Note that in the standard SPECTRUM the system variable PROG will
indicate that the BASIC program starts at location decimal 23,755, hex.
5CCB, and this will always be so unless the microdrive map area is being used,
or extra locations have been reserved for additional channel information.

In the program area BASIC lines are stored in the following format:
The first two bytes of any line hold the line number with the first byte
being the ‘high’ byte and the second byte being the ‘low’ byte.
The third and fourth bytes of a line hold the ‘remaining length’. This time
the ‘low’ byte comes before the ‘high’ byte. The ‘remaining length’ is the
number of bytes from the fifth byte to the final ENTER character in-
clusively.
Now comes the BASIC line itself. Sinclair codes are used for the tokens
and some characters and ASCI| codes for the standard alphanumeric
characters.
The last byte of a line is always an ENTER character.
Within a BASIC line multiple statements are separated from each other by
colons — character decimal 58, hex. 3A. There are no further markers for
multiple statements. Note that if a decimal number occurs in a BASIC line
then it is stored as its ASCI| characters and followed by the NUMBER
character — decimal 14, hex. OE, and the floating-point form for the
number, or the integer form for integers in the range —65,535 to +65,535,
which in either case will take a further five bytes. This leads to there being
six extra bytes of RAM being used for every decimal number that is in-
cluded in a BASIC program.

The following demonstration program ‘looks at itself’ in the program area
and shows the above points.

PROGRAM AREA DEMONSTRATION PROGRAM

17 FOR A=23755 TO 23817: PRINT

A; TAB 9;PEEK A;TAB 15; CHRZ PEEK

A: NEXT A

RUN

17

The variables area

The starting location of this area that holds the current BASIC variables is
always given by the value held in the system variable VARS, which itself
occueies the locations decimal 23,627 & 23,628, hex. 5C4B-6C4C.

Note that in the SPECTRUM system the start of the variables will not
change during the execution of any given BASIC program. Its size will how-
ever change as new variables are defined.

The last location in the variables area always contains the end-marker
character decimal 128, hex. 80.

The following program looks at its own variables area which contains only
the control variable for the FOR-NEXT loop.

VARIABLES AREA DEMONSTRATION PROGRAM:

174 FPOR A=23804 TO 23823: PRINT
A; TAB 9;PEEK A: NEXT A

RUN

The editing area

The starting location of this area that holds the BASIC line being entered, or
edited, is always given by the value held in the system variable E-LINE, which
itself occupies the locations decimal 23,641 & 23,642, hex. 5C59-6CbA.

When the lower part of the T.V. display shows only the flashing cursor the .

editing area will have three locations allocated to it. The first location, whose
address is also held by the systems variable K—CUR, holds an ENTER charac-
ter, and the second location an end-marker — again a character decimal 128,
hex. 80. The lower part of the T.V. display is obtained by copying over the
‘edit-line’ and displaying it.

Then, as characters are entered from the keyboard the editing area is
expanded to hold them.

A similar procedure occurs when the EDIT key is used to fetch a BASIC
line to the lower part of the display. First of all the editing area is expanded
to the correct extent to allow for the BASIC line. Then the line is copied over
from the program area to the editing area and finally the line in the editing
area is copied over to the lower part of the display RAM. This last stage does
involve the forming of high resolution representations from the character
codes.

As the editing area is a dynamic area, that is it changes whenever it is used,
it is not practical to give an example in BASIC at this point.

18

The work space
This area of the memory is used for many different tasks, e.g. INPUT data,
the concatenation of strings, etc. The starting location of the area is given by
the value held in the system variable WORKSP, which itself occupies the loca-
tions decimal 23,649 & 23,650, hex. 5C61-5C62. Whenever space is required
in the work space this area of the memory is expanded. After use the work
space is emptied, that is ‘collapsed to nothing’ so as to avoid using more
locations than is absolutely necessary.

Once again as this area is dynamic it is not possible to give a simple BASIC
example of its use.

The calculator stack
This very important area of the memory starts at the location addressed by
the system variable STKBOT, which itself occupies the locations 23,651 &
23,652, hex. 5C63-5C64, and extends to the location before that addressed
by the system variable STKEND, which occupies the locations 23,653 &
23,654, hex. 5C65-5C66.

The calculator stack is used to hold floating-point numbers, five byte
integers and when dealing with strings, five byte sets of string parameters.

The stack is manipulated on a ‘last-in first-out’ basis and the value held at
the top of the stack can be considered, if one does exist, as a ‘last value’.

The spare memory

The area of memory between the calculator stack and the machine stack re-
presents the amount of memory that is available to the user. In a standard
16K SPECTRUM there are nominally 8,839 locations in this area when the
system is turned on. However it is interesting to note that the lowest accept-
able value for CLEAR is 23,821 which pushes RAMTOP down by 8,878
bytes.

The machine stack
The Z80 microprocessor has to have an area of work space for its own use
and this is termed the machine stack. The stack pointer of the 280 always
points to the last location to have been filled.

The machine stack will be considered in much greater detail in the
machine code part of this book.

The GO SUB stack:
Whenever there are any active GO SUB loops the looping line numbers are

kept on the GO SUB stack.
The stack grows downwards in memory and each GO SUB looping address
requires three locations. The highest location holds the number of the state-

19

ment within the BASIC line to where the return is to be made. The next loca-
tion holds the ‘low’ part of the looping line number and the third location the
‘high’ part.

The following demonstration program shows the GO SUBstack being used
to hold the looping line numbers for three nested subroutines.

GO SUB STACK DEMONSTRATION PROGRAM:

14 GO SUB 2¢: STOP

2f GO SUB 3¢: RETURN

39 GO SUB 4@: RETURN

4% FOR A=32597 TO 32589 STEP -
1: PRINT A,PEEK A: NEXT A: RETUR
N
RUN

The two locations above the GO SUB stack always contain the values
@ and 62, hex. 00 and 3E, and between them they represent an illegal line
number. A BASIC program that contains an extra RETURN command will
by attempting to make a jump to the illegal line cause the ‘RETURN without
GOSUB’ error message to be printed. (Note: Sinclair is not totally consistent
over the spelling of GO SUB.)

The system variable RAMTOP, which occupies the locations decimal
23,730 & 23,731, hex. 65CB2-5CB3, holds the address of the location that
contains the value 62. This location is considered as being the last location in
the BASIC system area.

The user-defined graphics area

Unless the BASIC system area has been moved down by the use of a CLEAR
command, the top one hundred and sixty eight locations in the memory hold
the bit representations of the 21 user-defined graphics.

As part of the initialization procedure of the SPECTRUM the bit repre-
sentation of the latters A to U are copied to this area. Later on the user is able
to change these representations to give up to 21 user-defined graphics.

The topmost location in the memory is always addressed by the system
variable P-RAMT, which occupies the locations decimal 23,732 & 23,733,
hex. 5CB4-5CB5. :

20

In the standard 16K SPECTRUM the value held in P-RAMT ought to be
32,767 as this shows that all of the 16K of memory is in working order.

It certainly does no harm to occasionally enter the line:

PRINT PEEK 23732+256*PEEK 23733
and see that the result is indeed the value 32767. (In a 48K SPECTRUM the
result should be 65535.)

21

2. UNDERSTANDING — BASIC commands and functions

2.1 Introduction

It is expected that the readers of this book will already have acquired a reason-
able knowledge of the SPECTRUM’S BASIC so this chapter discusses the
BASIC commands and functions trying to bring out points that are not
mentioned in detail in the two handbooks supplied with each SPECTRUM.

The BASIC interpreter of the SPECTRUM recognizes fifty different
commands and thirty three functions. Each of these will now be discussed
briefly. They will be dealt with in alphabetical order so as to make reference
to them a little easier. The control characters are discussed in section 2.4.

2.2 The BASIC commands

BEEP x,y
This command causes a note to be produced by the loudspeaker. x is the
duration in seconds and y the pitch of the note away from middle C, within
the range decimal —60 to +69.8. Either x or y, or both, can be expressions.

It is interesting to note that a BEEP cannot be interrupted as the program
of the BEEP command routine does not check the BREAK key. A BREAK is
only possible at the end of the statement containing the BEEP command.

BORDER m

There are eight possible colours that can be given to the border area of the
T.V. display. The integer range for m is thereby 0 to 7. However m is rounded
and the true acceptable range is -0.5 <m <7.5. m can be an expression
and is accepted as long as the result lies within the given range.

The effect of a BORDER m command is to send an QOUT signal on port
254, and this can be shown by trying the line

OUT 254, m (where m=2 will give a red border).

But OUT and BORDER are different. The colour given to the border area
by an OUT command is a ‘temporary’ colour, whereas a BORDER command
gives a ‘permanent’ colour with the colour being stored in the system variable
BORDCR. (location decimal 23,624, hex. 5C48)

This permanence can be shown as follows:

Enter BORDER 2 & ENTER
which will make the border area RED.
Then enter OUT 254,1 & ENTER
and the border will go BLUE but this is just temporary as a further
ENTER will return the RED border.
Note also how BORDCR keeps the colour of the paper in the lower part of
the T.V. display.

22

BRIGHT m

This is the first of the ‘colour item’ commands. All of these commands can be
used either as the only command in a BASIC statement, in which case the
command is ‘permanent’, or embedded in a printing statement, in which case
the command is ‘temporary’.

m can be an expression but only the integer results of 0, 1 & 8 are accept-
able.

With m=0 the display will be of normal brilliance but with m=1 any future
printing will be done on BRIGHT paper. The use.of BRIGHT 1 & CLS is the
easiest way of making the whole screen display become BRIGHT.

With m=8 any printing to be done will use the brilliance for a character
area that is already assigned.

The following lines show the four different ways in which a colour item,
such as BRIGHT can be used.

10 BRIGHT 1: PRINT “‘Bright—"";:
BRIGHT @: PRINT “Normal”’
which on two occasions changes the brilliance in a ‘permanent’ manner.
20 PRINT BRIGHT 1; “Bright—"";B
RIGHT @; ““Normal”’
which changes the brilliance ‘temporarily’ during the statement.
30 PRINT CHR$ 19+CHRS 1; ““Brigh
t—'"; CHR$ 19+CHRS$: @ “Normal”’
which replaces the command with its CHR$ equivalent.
40 LET A3=CHR$ 19+CHRS$ 1: LET
B$=CHR$ 19+CHR$ @: PRINT AS;"Bri
ght—""; B$; “Normal”
which puts the colour items into string variables.

It is also possible to use the keystrokes ‘extended, unshifted 9’ for
BRIGHT 1, and ‘extended, unshifted 8’ for BRIGHT 0. These keystrokes
may be placed inside a quote area, ie. between the open-quote and the first
character, or quite advantageously in string variables to be used as required,
e.g. LET A%""": REM Inside the quotes is an extended unshifted 9. Printing
A9 will then act as BRIGHT 1.

CAT
For use with microdrives. (No details available yet)
CIRCLE x,y, z
This command draws a circle of radius z, with x & y giving the centre.

zis taken as an absolute integer, whereas x & y are manipulated as floating-
point numbers.

The largest circle that can be drawn is of radius 88 units as with the line
— CIRCLE 127.5,87.5,88 whereas a ‘circle’ with radius zero is a single point.
Any of the ‘colour item’ commands may be embedded inside a CIRCLE
statement and their effect will always be ‘temporary’.

23

By some standards the CIRCLE command is rather slow and inaccurate
but nevertheless it is very useful.

CLEAR and CLEAR n

As the SPECTRUM system has such a large amount of RAM available to the
user, the use of a CLEAR command by itself is unlikely to be very helpful.
However, the extension of the command to include a facility for moving
RAMTOP makes it a powerful command. RAMTOP is the pointer to the top
of the BASIC system and the contents of any location below RAMTOP is
liable to be overwritten and thereby destroyed, whereas any locations above
RAMTOP are safe — even from a NEW command.

The lower limit for n that is possible is 23,821 after which the SPECTRUM
will buzz when a key is pressed. This shows that there is insufficient RAM
available for the task.

The upper limit for n is, for a 16K system — 32,767, and for 48K system
— 65,5635. The use of CLEAR n with the appropriate number has the effect
of putting the machine and GO SUB stacks in the area used for user-defined
graphics. It is instructive to try the following steps as it is possible to see,
indirectly, the contents of the stacks changing as they are used.

Enter CLEAR 32767 (or 65535).

Change the cursor to G and enter the letters L to U. Then hold down the
SPACE key for several seconds and watch the user-defined graphics changing
as each key press leads to the machine stack being used.

CLOSE
For use with microdrives.

CLS
An apparently very simple command which takes less than a tenth of a
second to execute but it does involve the microprocessor in a lot of work.
The CLS command clears the display file. In effect it writes zeroes into all
the locations from decimal 16,384 to 22,5627, hex. 4000-5800, and resets all
the attribute bytes in locations 22,528 to 23,295, hex. 56800-5AFF. The
command does not set these latter locations to zero but rather copies the
system variable ATTR-P into each location. ATTR-P, which is surely the
abbreviation of ‘permanent attribute’ holds the current permanent attributes.
By POKEing different values into ATTR-P at location decimal 23,693, hex.
BC8D, and then pressing ENTER an extra time, it will be seen that the screen
changes predictably. In ATTR-P, bit 7 controls the FLASH, bit 6 the
BRIGHTNness, bits 3-5 the PAPER colour and bits 0-2 the INK colour.

24

CONTINUE

In most of the required instances this command works well. But when dealing
with direct commands the user may find that the computer goes into a ‘loop’,
that can be exited only be resorting to the BREAK key.

There are two distinct facets to the CONTINUE command. The first is to
allow the user to have STOP statements in a BASIC program which may be
stepped over by using the CONT key. The same operation works in respect to
using the BREAK key. In this type of operation the user is able to examine
variables, set variables and change the BASIC program in any way, except for
deleting the STOP statement. The use of a STOP statement and the CON-
TINUE command can be very helpful when de-bugging programs.

The second facet allows the user to repeat the interpretation of a state-
ment after correcting an error. For example it a program stops with a ‘vari-
able not found’ error then the variable can be defined using a direct command
and the program restarted using a CONTINUE command.

Six system variables — NEWPPC, NSPPC, PPC, SUBPPC, OLDPPC and
OSPCC — are involved in some way with the execution of the CONTINUE
command and the details are given in Chapter 25 of ‘BASIC programming’.

COPY

This is a very straighforward command. Unless the printer is not attached to
the SPECTRUM, the top 22 lines of the T.V. display are sent to the printer.
The one hundred and seventy six high resolution lines of the T.V. display area
are dealt with in turn. The COPY command is one of several commands that
switch off the ‘real time clock’ and hence the clock loses time if COPY is
used. This can be shown by examining the system variable FRAMES before
and after the use of COPY.

DATA¢e,e,...

This command, which can only be used in a program line, sets up a data list.
Although it is mentioned in the manual, it is not made very clear that the
items in a DATA statement are dealt with as expressions a feature that does
make this command very useful. For further details see READ & RESTORE.

DEF FN afa,...z)J=e & DEF FN a$(a,. . .z)=e
The DEF FN command is very powerful in the SPECTRUM.

The user is able to define up to 52 functions — 26 numeric and 26 string.
The names used for the functions must always be single characters (+$ for
strings) and they can be names that are used elsewhere as simple variables.

There is a slight restriction on the names of the arguments that can be used
as these must also be single characters (+$ for strings). Therefore again up to

25

52 arguments are possible should they be needed. The expression of a defined
function can be anything that gives the appropriate numeric or string result.
However including the function itself as a defined function in the expres-
sion does lead to confusion (to date the only way the author knows to
‘crash’ the SPECTRUM in BASIC.)

DELETEf
For use with microdrives.

DIMafey,e,) & DIM a8(ey,. . ..e;)

The DIM command ‘reclaims’ any existing array with the same name and then
sets up a new array as directed. Numeric arrays have zero in every location,
whilst in string arrays ‘space’ characters are used.

In the SPECTRUM system all subscripts start as ‘1’, or more strictly
0.5< e <1.56. The common error of having a subscript reaching zero gives
the ‘subscript wrong’ message. The use in the SPECTRUM system of fixed-
length strings in string arrays, whereas simple string variables are of changing
length, does lead to some confusion. But it is most straightforward as the last
subscript used in the definition of any string array always fixes the length of
the strings. This feature can be most useful when formatting a screen display.

DRAW x,y & DRAW x, y, z
This command draws a line from the current plot position, but not including
it, to a point x away from it horizontally and y away from it vertically. If
the argument z is specified then an arc is drawn instead of a straight line. z
has to be specified in radians with z=Pl| giving a semi-circle. With positive
values of z the arcs are drawn to the right-hand side of where the straight line
would have been and with negative values the arcs appear on the lefthand side.
Any of the ‘colour item’ commands can be embedded in a DRAW state-
ment where their effect will always be ‘temporary’.

ERASE
For use with microdrives.

FLASHm
This is the second of the ‘colour item’ commands. When used alone in a
BASIC statement its effect is ‘permanent’ but when used embedded in a
printing statement its effect is ‘temporary’.

As with BRIGHT, see above, m can have the values 0, 1 or 8. With m=0
the character areas with not flash; with m=1 they will flash; and with m=8
the former condition will apply.

26

FORA=xTOy STEP z
The FOR command is a most interesting command and generally very poorly
understood despite its wide usage.

The tasks undertaken by the interpreter when dealing with a FOR com-
mand are to a) delete any existing variable which has the same name, or any
existing control variables with the same name; b) Add to the existing variables
a new control variable. This variable takes up nineteen locations of the
memory. The first location holds the variable’s naming letter, suitably marked.
The next five locations hold the initial value of the FOR loop, stored as a five
byte floating-point number. The next five locations hold the ‘limit’ value as
a floating-point number. The ‘limit’ value is so called as it limits the number
of times the FOR-NEXT loop is used. The next five locations hold the ‘step’
value. If unspecified the ‘step’ will be set to ‘1’. The final three bytes of the
control variable hold the details of the looping line. The first two of these
three bytes will hold the number of the line containing the FOR command
and the third byte the statement number within the line, increased by one.
The looping is thereby done to the next statement after the FOR command
whether it be in the same line or not.

If the value, limit & step are integers between —65,535 and +65,635 then
they are stored as ‘integral’ numbers rather than true floating-point numbers
and are handled 20% faster. The following program demonstrates the con-
tents of a FOR control variable. Note that the FOR command in line 10 sets

up a dummy variable named ‘A’ that is not used later in the program.
PROGRAM TO DEMONSTRATE A FOR CONTROL VARIABLE.

1¢ FOR A=1.6 TO 2.1 STEP #.1

2@ LET V=PEEK 23627+256*PEEK 2
3628-1

37 FOR B=1 TO 19

4% PRINT B,PEEK (V+B)

54 NEXT B

RUN

adding 25 LET V=V+25 will show the ‘B’ control variable.
c) The third action undertaken by the interpreter is a very special one. In the

27

SPECTRUM no error is caused by setting the STEP value in the wrong direc-
tion. This means that a line such as:

FOR A=2TOQSTEP 1
is allowable. However, it does lead to the whole of the FOR-NEXT loop
being ignored. This can be shown by changing the above demonstration
program as follows:

10 FOR A=1.6 TO 2.1 STEP —0.1

60 NEXT A
and the program will be executed successfully but there will not be any
printing.

This -ability to ‘jump over’ whole loops can both be an advantage — it

allows limits of zero to be accepted, and a disadvantage as sometimes the
expected results just fail to appear at all.

FORMAT f
For use with microdrives.

GO SUBn
This command leads to the execution of the subroutine that starts with the
line number n, or the first line after that number.

After the subroutine has been completed control returns to the first state-
ment in the program after that containing the GO SUB command. The fol-
lowing little program shows that in a 16K SPECTRUM the GO SUB stack
starts by using locations 32,595 to 32,597.

PROGRAM TO DEMONSTRATE THE GO SUB STACK.

10 GO SUB 2@: STOP

20 FOR A=1T0O 3: PRINT A,PEEK
(32594+A): NEXT A

RUN

A powerful feature of the SPECTRUM’s BASIC is that it allows for GO SUB
and GO TO commands to make computed jumps. This feature is not available
on many other machines although the common ‘ON x GO SUB' and ‘ON x
GO TO'’ does allow a certain amount of computed jumping to be made.

GOTOn
A very straightforward command. The next line to be interpreted is to be line
n, or the first line after n. Jumps may be made to REM statements although
to do so is perhaps a little untidy.

A GO TO command stores its destination line number in the system
variables NEWPPC & NSPPC, locations decimal 23,618 to 23,620, hex.
5C42—-5C44.

28

Jumps to statements in a line that are other than the first are not allowed
in normal practice.

IF x THEN s

In the SPECTRUM system the quantity zero is considered to be logically
FALSE, and any quantity that is other than zero is considered logically
TRUE. An IF x THEN s command will proceed to the ‘s’, and any other
statements in the program line, only if ‘x" is TRUE.

The IF — THEN command does work well but the following little program
has been written to show by the use of ‘repeated division’ that on occasions a
quantity will never become FALSE. The problem arises in this manner from
the way the SPECTRUM deals with the quantity 2 * —128.

PROGRAM TO DEMONSTRATE A SPECIAL CASE OF IF — THEN.

14 LET A=1

2¢ IF NOT A THEN PRINT A: STOP
3% PRINT A

4¢ LET A=A/2

54 GO TO 2¢
RUN

And A will be printed out, over five screens, until it reaches a value of
24 —128 when a loop is created. However if line 4@ is changed to : LET
A=A*0.5, then zero will be reached.

INK n
This is the third of the ‘colour item’ commands. When used alone in a BASIC
statement its effect is ‘permanent’ but when used embedded in a printing
statement its effect is ‘temporary’. : s

The value of n can be between 0 and 9. The eight principal colours used
in the SPECTRUM have the codes in the range O to 7 inclusive and are
clearly shown on the keyboard. The use of INK 8 results in any printing
appearing with the ink colour already attributed to that character area. The
use of INK 9 is, however, a little more complicated as the ink becomes only
black or white depending on the paper colour for the character area being
used. When the paper colour is dark, ie. black, blue, red or magenta, then the
ink colour is white, but with a light paper colour, i.e. green, cyan, yellow or
white, then the ink colour is black. The actual action of a ‘permanent’ INK

29

command is; for n=0 to 7, to set bits 0, 1 & 2 of ATTR—P as required; for
n=8 to set bits 0, 1 & 2 of MASK—P; and for n=9 to set bit 5 of P-FLAG. If
the INK command is ‘temporary’ then the appropriate bits of the temporary
system variables are set instead.

INPUT . ..
This is a very powerful command and allows for a series of INPUT items to-

gether with the printing of any ‘print items’ that may be desired.
The following BASIC program shows the use of multiple INPUT items.
Note that INPUT only works for the ‘editing-area’ of the T.V. display.
PROGRAM TO DEMONSTRATE MULTIPLE INPUT ITEMS.

1¢ INPUT "Name please ",AZ;CHR
3 13;"Age please ";Bg
2¢ PRINT AT 5,d;"Name";TAB 7;A

B;CHRZ 13;"Age";TAB 7;B2

The use of INPUT LINE . .. allows for a whole line to be taken in for a string
variable. Once again ‘print items’ can be used but they must come before the
word LINE. The following BASIC line is an alternative to line 1@ in the above
program.
10 INPUT ““Name please”, LINE A
3;CHRS 13;“Age please”, LINE B$

It is interesting to see that the programmer has chosen ‘cursor down’ as the
exit key for INPUT LINE.

INVERSE n
This is the fourth of the ‘colour item’ commands. Once again its effects can be
‘temporary’ or ‘permanent’.

If INVERSE 1 is used then subsequent printing will appear with ‘paper on
ink’, whereas with INVERSE 0 the printing is the normal ‘ink on paper’.

The actual action of setting the inverse mode is to set bit 5 of P-FLAG
when ‘permanent’ and bit 4 when “temporary’.

LETv=e

This is the most fundamental of all BASIC commands. A variable is selected
by the user and the interpreter then has to determine whether or nor the
variable is a simple one, is to be found in a FOR-NEXT control variable, or
forms part of an array. A simple variable will have any existing reference to

30

it ‘reclaimed’ and new space allotted. A control variable and an array variable
will be located but not ‘reclaimed’. Next the expression that is to give the
value of the variable is evaluated and copied to the correct space.

All numeric variables have five locations allotted for a value. This value is
then kept as a floating-point number or an integral. Simple strings have a
dynamic length, that is the number of locations allotted to a simple string
depends on the number of characters in the string at a particular moment. All
array strings are of fixed length and a string that is assigned to an array will be
truncated if it is too long, and assumed to be filled-out with space characters
if it is too short, for the fixed area allotted to it.

The following demonstration shows a simple way to look at the variable
area and allows the user to enter a variety of variables for examination.

PROGRAM TO LOOK AT VARIABLES IN THE VARIABLES AREA.

14 REM enter your variable.
2@ LET V=PEEK 23627+256%PEEK 2
3628
3% PRINT V,PEEK V: LET V=V+1:
GO TO 3¢
Some suggestions for line 10 might be:
LET A=¢
LET A=9E4
LED AZ="AAA"
DIk A(2): LET A(1)=9E4
DIk AZ(5): LET AZ="1234567"
DIM AZ(2 000 s LD AR)="TAAA"
LISTn
This command assumes that the value of n is to be zero unless specified other-
wise. If line n exists then that line is made the current line and marked with
the cursor. It is an interesting quirk of the system that LIST 49172, for

example, is the same as LIST 20.

31

LLISTn

This command sends the listing of the BASIC program to the printer. Again n
becomes the current line. For those readers with a sense of humour it is inter-
esting to try LIST fH: 3 & LLIST #2, and include them in programs.

LOAD
The LOAD command has many different facets to it and allows for the load-
-ing of BASIC programs, variable arrays and code blocks.

In general the LOAD command is covered very well in ‘BASIC program-
ming’ and the following discussion will concentrate on the points not covered
in the manual.

The information, code or program, stored on a cassette tape is held in two
parts. The first part is a seventeen byte ‘header’ and the second part a ‘code
block’.

Each of these parts uses the same format of a set bit being represented by
a burst of sound that is twice as long as that of a reset bit. There are short
inter-bit delays and longer inter-byte delays. In the SPECTRUM there is a
leading marker byte — +00 for a ‘header’ and +FF for a ‘code block’ — and a
trailing parity byte after both the ‘header’ and the ‘code block’.

The ‘header’ block is split into five parts as follows:

1. A single byte of information which is ‘0’ for a BASIC program, ‘1" for a
numerical array, ‘2’ for a character array and ‘3’ for a block of code.

2. The next ten bytes hold the file name. A name that has more than ten
characters is not acceptable.

3. Two bytes that hold the total length of the code block. In the case of a
BASIC program only the program area and the variables area are kept on
the tape.

4. Two bytes that for a BASIC program hold the starting LINE number, or
for a block of code the start of that block.

5. Two bytes that for a BASIC program hold the length of the program area.

The ‘code block’ is simply loaded into the required area of RAM as direc-
ted by the information in the ‘header’.

LPRINT
This command causes any ‘print items’ that follow to be sent to the printer.
For further discussion see PRINT below.

MERGE f

This command allows for a BASIC program and its variables to be loaded
from cassette tape and merged with the existing program and variables. Where
the same line numbers occur in both programs only the new version is kept.

32

This applies also to variables with the same name and nature. The command
routine works by treating the new program as a block of data that is to be
loaded into the work space. Thereafter, the program areas are compared,
line by line, and the new lines copied from the work space to the main pro-
gram area. The program area is ‘reclaimed’ and ‘expanded’ as needed. Once
the BASIC lines have been merged, a similar operation merges the variable
areas.

MOVE £, ,f,
For use with microdrives.

NEW

This command does a total system restart except that the system variables
RAMTOP, P-RAMT, RASP, PIP and UDG keep their original values. The
existing definitions of the user-defined graphics are also left untouched.

NEXT a

This command should be viewed as the command that does the work in a
FOR-NEXT loop once the control variable has been set up. (see FOR above.)
The steps involved in the execution of a NEXT command are as follows:

a) The control variable is located in the variables area and the value of the
STEP is added to the VALUE, no matter whether the STEP is positive or
negative.

b) Next the new VALUE is tested against the LIMIT, but here note does have
to be taken of sign of the STEP. If the LIMIT is exceeded then no further
looping is possible — the NEXT command is finished. However, if the
LIMIT has not been reached then a further pass of the FOR-NEXT loop is
made.

In the SPECTRUM the VALUE is always incremented before the limiting
test is made, hence the final VALUE on leaving the FOR-NEXT loop, upon
completion, will always be greater than the LIMIT for a positive STEP, and
less than the LIMIT for a negative step.

OPEN #=
Foruse with microdrives. However, it is possible to OPEN and CLOSE streams
on a standard machine as follows:

Try the line PRINT # 5;WORKS?” and it will not work until the
stream is opened by using the line OPEN # 5,”S”. The line CLOSE #5 will
close the stream.

The following lines show INPUT being accepted from the keyboard and
output being passed to the T.V. screen.

33

16 OPEN #5,”K"”
20 INPUT #5;A8
30 OPEN #5,“S"
4B PRINT #5,A%

oUTm,n
This command enables the user to send signals to the output port of the
SPECTRUM from BASIC.

In BORDER, see above, it was shown how port 254 controls the colour of
the border, a different colour being given for n=0 to n=7. However, port 254
can also be used to control the loudspeaker and the following program shows
how this is done. The program interestingly shows how it is possible to get an
estimate of the time that the SPECTRUM takes to interpret a statement as a
fast statement will give a high note, whilst a slowly interpreted statement
gives a series of clicks.

PROGRAM TO SHOW THE LOUDSPEAKER BEING CONTROLLED

10 OUT 254,23: ————————— : OUT 254,7: GO TO 10
In the program the user’s statement under test might be, for example:

PRINT;:, RANDOMIZE:, LET A=0:, or POKE @,d:.

In the program OUT 254,23 de-activates the loudspeaker and OUT 254,7
activates it. The operation is repeated very rapidly to produce a sound.

As further input/output devices become available the OUT command will
be used more frequently.

OVERn
This is the fifth of the ‘colour item’ commands. Once again its effects can be
‘temporary’ or ‘permanent’. If OVER 1 is used then subsequent printing will
be ‘XORed’ with that already existing in the character area being handled.

‘XORing’ a bit flips the state of that bit — a set bit becomes reset and
hence a ‘unplot’ will occur, or a reset bit becomes set and hence a ‘plot’ will
occur.

With OVER 0 all the bits in a given character area that are involved will be
‘plotted’.

Note that with OVER 1, if a character or line is printed twice then it will
disappear:

i.e. 10 OVER 1: PRINT ““A”; CHR$ 8;"A"

where CHRS 8 is ‘backspace’.

Bit 1 of P-FLAG is the actual controlling flag for OVER.

PAPER n
This is the sixth, and final, ‘colour item’ command. Once again its effect can
be ‘temporary’ or ‘permanent’.

34

As with INK, the command PAPER can be used with n=0 to n=9. The use
of n=0 to n=7 is very straightforward. With n=8 the “transparent’ mode is set
and the colour of the paper in the character area currently being handled will
remain unchanged.

The use of PAPER 9 is a very useful command for the provision of titles.
PAPER 9 determines that the paper colour of an area shall ‘contrast’ with the
ink colour being used. Hence, with light writing — green, cyan, yellow &
white — the paper will be black, but with dark writing — black, blue, red &
magenta — the paper will be white.

The actual action of a ‘permanent’ PAPER command is; for n=0 to 7 to set
bits 3, 4 & 5 of ATTR-P as required; for n=8 to set bit 3, 4 & 5 of MASK-P;
and for n=9 to set bit 7 of P-FLAG.

PAUSE n

This command HALTs the Z80 for the period of n interrupts. The only work
that is done during a pause period is therefore to handle the keyboard inter-
rupt routine. The pause period will end after n interrupts, or upon a key
stroke, whichever occurs first.

PLOT x,y
In the SPECTRUM'’s display there are 256 * 176 pixels, each of which may
be controlled individually with the PLOT command. In normal operation the
PLOT command will set the bit of the RAM corresponding to that pixel. The
command also makes that pixel the current object of the system variable
COORDS that records the details of the last pixel to be addressed.

Any of the ‘colour items’ may be used embedded within a PLOT state-
ment and the use of OVER 1 can lead to ‘UNPLOT’ and INVERSE 1 to
‘NOPLOT'. A PLOT command does convey the permanent INK colour to

the character area involved but none of the other items unless they are speci-
fied ‘temporarily’. (i.e. PAPER 8; FLASH 8; BRIGHT 8; is implied.)

POKE m,n

This command enables the user to enter values directly into the memory of
the SPECTRUM. The acceptable range for m is from 0 to 65,535, but no
error is given when the user tries futilely to POKE values into the ‘read only
memory’. The acceptable range for n is from —255 to +255. The values 0 to
+255 are dealt with directly but those from —255 to —1 have +256 added to
poke them,

PRINT ...
This command allows for a variety of ‘printing items’ to appear on the T.V.
display.

35

The items are separated from each other by ‘separators’ that determine
whether, or not, space is to be left free in the display. The ‘;" means no space,
the ‘," means that tabulation to the next half-line is to be made, the *’ means
that printing is to start on the next line. The position of the printing can also
be positioned by using TAB and AT.

The items can be ‘colour items’, whose action will be ‘temporary’, numeric
expressions or string expressions. Note that all the ‘colour items’, separators,
and positioning controllers can be included as their appropriate CHR$ values
and this can be useful.

RANDOMIZE n
This command sets the value of SEED, the system variable held in locations
decimal 23,670 & 23,671, hex. 5C76-5C77.

If n is unspecified then the value for SEED is taken from the lower two
bytes of FRAMES and can be assumed to be fairly random. If n is specified
then this number is copied to SEED.

For further details of the pseudo-random number generator see RND
below.

READ v, ,v,. ..
This command is used in conjunction with a DATA list and can be considered
as a multiple LET command. The items in the DATA are expressions and the
items following the READ command are variables to which the expressions
are assigned. Error messages are given if either the variables are inappropriate
or the expressions are of the wrong nature. Note that it is indeed possible for
a READ statement to include previously undeclared simple variables.

The system variable DATADD, held in locations decimal 23,639 & 23,640,
hex. 5C57-5C58, is used to point along the DATA list. Initially this pointer is
set to the location before the program area and is reset to this value by RUN.

REM ...

This is a useful command as it allows comments to be made. The whole of the
BASIC line after a REM command is considered to be the REM statement so
any statement put after a REM statement will not be found by the BASIC
interpreter.

RESTORE n

This command is used in conjunction with the DATA list set up in one, or
more, DATA statements. If n=0 then the pointer DATADD is made to point
to the location before the program area. If n is specified then DATADD is
made to point to the location before the start of that line, should it exist, or
the first line after line number n, if n should not exist. If n exceeds 9999, the

36

highest legal line number, or is past the final line number, DATADD will
point to the last location in the program area.

RETURN

This command leads to the last entry on the GO SUB stack being fetched. If
the entry forms a valid statement number then the interpreter will execute
that statement next. Invalid entries will give the ‘/RETURN without GOSUB’
error message.

RUN n
This important command allows the user to execute BASIC programs. If n is
not specified it will be assumed that the user wishes the interpreter to com-
mence at line 1. When n is specified the interpreter searches in the program
area for a BASIC line with that line number, or the first BASIC line after if
line n does not exist, and proceeds to interpret the line.

The RUN command initialises the required pointers by performing a
RESTORE and a CLEAR before interpreting any lines.

SAVE
This command is covered very well in the manual — ‘BASIC programming’ and
further details are given under LOAD, see above.

STOP

Whenever this command is interpreted the error message ‘STOP statement’
will be given. The use of CONTINUE as a direct command will then allow the
program to be continued from the next statement.

As with any error situation the effect of a STOP ‘error’ is to transfer the
error number to the system variable ERR-NR which is held at location deci-
mal 23,610, hex. 5C3A. The error number is always one less than the error
code that appears before the error message.

Once an error has occurred the interpreter stops its program execution
routine and jumps to the error handling routine. There, the error number is
transferred to ERR-NR and the ‘command mode return address’ (location
decimal 4,867, hex. 1303) is collected. This ‘return address’ is always present
during the time that a program is being interpreted in the two locations below
the GO SUB stack. If there are no current GO SUB loops then the GO SUB
stack will be empty but as different subroutines are entered the ‘return
address’ will be moved down in memory and then up again as the subroutines
are completed. The ‘return address’ is always pointed to by the system vari-
able ERR-SP, which is held in locations decimal 23,613 & 23,614, hex.
5C3D-5C3E.

Note that the commands RUN and GO TO do not clear the GO SUB stack
and hence if a BASIC program halts with open subroutine calls then ERR-SP

37

will gradually point lower in memory by three bytes for each subroutine.
However the CLEAR command does remove any unwanted statement num-
bers on the GO SUB stack as part of its duties and thereby resets ERR-SP.

VERIFY

The presence of this command can be most reassuring to the user of a
SPECTRUM. VERIFY allows for any ‘program’ that has been passed to the
cassette player by SAVE to be checked against the original. The verification
process does check both parts of the program, that is the ‘header’ and the
‘data block’. Error R — tape loading error — is signalled if the recording on
the tape does not match the original exactly.

2.3 The BASIC functions

ABS
All negative numbers are made positive, whilst positive numbers are left
unaltered.

ACS
The argument x is taken as a cosine and the function returns the value in
radians of the angle concerned.

AND

This is a binary operation and thereby requires two operands. If both oper-
ands are logically ‘true’ then the operation is ‘true’ overall. However, if one or
both of the operands are logically ‘false’ then the operation is ‘false’ overall.
A numeric expression that is ‘false’ will have the value zero and a string
expression that is ‘false’ will have zero length, i.e. a null string. When the
result is “true’ overall it is the first operand that is returned to the user.

ASN
The argument x is taken as a sine and the function returns the value in radians
of the angle concerned.

ATN

The argument x is taken as a tangent and the function returns the value in
radians of the angle concerned. ATN is one of the four functions evaluated
in the SPECTRUM by using Chebyshev polynomials.

ATTR
This functions has the form ATTR (Line,Col). It returns to the user the value
held in the specified attribute byte. The function is equivalent to:

PEEK (22528+Line*32+Col)

38

The attribute value can be considered as:
INK + PAPER*8 + BRIGHT*64 + FLASH*128

BIN
This is an interesting function as it allows any integer in the range 0 to 65,635
to be entered in its binary form. Any number of binary digits up to a limit of
sixteen is permitted.
The following BASIC line is therefore quite legal and will produce the
numbers 1 to 10.
10 FOR A=BIN 1 TO BIN 1010 STE
P 0000000G1: PRINT A: NEXT A
Although the SPECTRUM allows for numbers to be entered in their binary
form they cannot be printed in that form without using a BASIC routine.

CHRS
This function returns to the user the character, as a string, for the given code
X.

The following BASIC line shows the character set being printed. The
CONTINUE & ENTER keys will have to be used six times to step over the
colour control codes.

10 FOR A=0 TO 255: PRINT CHR$
A;: NEXT A

CODE
This function returns to the user the code for the first character in the
argument x3. The code will be zero if x$ is a null string.

cos
The argument x is considered to be in radians and the function returns the
appropriate cosine for that angle.

EXP
For a given argument x the function returns the value ‘e to the x’, where e
is 2.7182818 . ..

EXP is another of the functions evaluated in the SPECTRUM by using
Chebyshev polynomials.

FN

In the SPECTRUM there may be up to twenty six numeric and twenty six
string user-defined functions. The function token FN must be followed by a
single letter, or a single letter and the ‘8’ character, and then the arguments
required by that function enclosed in a pair of brackets.

39

IN
The argument x is used as a port address and the resultant value read in will
be in the range 0-255. If the port is not being used the value will be 255.

INKEYS

This function allows for the keyboard to be scanned without resort to the
INPUT command. If a single key is being pressed théh the in-key-string will
be a string of length one character, with that character being the appropriate
one. INKEY$ does distinguish both lower and upper case characters, and the
symbol shift tokens. Various of the other keys give spaces whilst others give
question marks. If there are no keys being pressed, or more than one letter/
digit key being pressed, then the in-key-string is a null string.

INT
For a given value x this function returns only the integer part. Negative values
are first of all truncated, then ‘1’ is subtracted so as to ‘round down’ the
result.

e.g. +4.66 will yeild +4, whereas —5.66 would be truncated to —5 and
then reduced to —6.

LEN
This function finds the length of a given string. A null string will give the
result zero.

However, note that ‘colour items’ obtainable from keys may be included
in strings and these key items do have a length of two characters.

LN
For a given argument x the function returns the logarithm, to the base e, for
that valug of x.

LN is another of the functions evaluated in the SPECTRUM by using
Chebyshev polynomials.

NOT
This is an interesting function as it is the only function that gives the ‘logical’
state of a value in the SPECTRUM system. However, it is important to realise
that the result is inverted and that the true logical result is given by the rather
awkward looking ‘NOT NOT x’.

i.e. for x = 2 which is a “true’ value.

NOT x is O which is ‘false’,

& NOT NOT x is 1 which is the correct ‘true’ answer.

for x = 0 which is a ‘false’ value.

NOT x = 1 which is ‘true’,

& NOT NOT x = 0 which is the correct ‘false’ answer.

40

OR

This is a binary operation and requires two numeric operands. If either of the
operands are logically ‘true’ then the operation is ‘true’ overall. However, if
neither of the operands are ‘true’ then the operation is ‘false’ overall. A ‘true’
result will have the value one if the second operand is zero and the ‘value of
the first operand’ if the second operand is other than zero.

PEEK
This useful function returns the value found in the location x in memory. The
result will always be an integer in the decimal range O to 255 inclusive.

P/
A most straightforward function. The floating-point representation of P1/2 is
held as a constant in the ‘table of constants’ in the read only memory. This
value is collected, doubled and passed on for the user.

The value of Pl used is approximately 3.141592653 . ..

POINT
This function has the form POINT (x-plot,y-plot), and returns the value ‘1’
if the pixel at that position is ‘set’ and the value ‘0’ if reset.

RND

In the SPECTRUM the random numbers are generated by a pseudo-random
number generator. The system variable SEED, located at decimal 23,670 &
23,671, hex. 5C76-6C77, is collected, modified and restored with each call to
the RND function. The random number returned to the user is the new value
of SEED divided by 65,536.

The value of SEED is set to zero upon initialization of the SPECTRUM.
Thereafter it follows a sequence through the set of integers O to 65,535. No
value will be repeated until all 65,536 numbers have been used.

The following two BASIC examples show these features.

a) THE CIRCULAR NATURE OF RND.
10 PRINT RND: FOR A=1TO 65535
: POKE @, RND: NEXT A: PRINT RND
This program takes over twenty minutes to run, but it does show that

the same RND number is produced every 65,536 calls. (POKE @,RND is a
dummy statement.)

b) THE MODIFICATION OF SEED.
1% POKE 2367¢,8%: POKE 23671,%

2@ LET Seed=g

41

3¢ LET Seed=Seed+l
4¢ LET 3eed=Seed*75
5¢ LET Seed=Seed-INT (Seed/655

SHl) 6B oSl
64 LET Seed=Seed-1
74 PRINT Seed/65536,RND

Line 10 resets the system variable SEED to zero. The program shows that the
same results are produced by the modifying steps — lines 30 to 60 — as by the
call to RND.

SCREENZ
This is a most interesting function and very poorly covered in the manuals.

The form for this function is SCREENS (line,column) and the function
returns a string containing the character at the given position. The function
recognises the characters with codes in the range decimal 32—127, hex.
20—7F, whether they are normal or inverted.

The function works by comparing the contents of the 8 bytes for the given
character area against the 8 byte representations held in the character genera-
tor. The function returns a null string if the character is not one of the ninety
six characters in the ‘generator’.

It is unfortunate that the function does not allow for comparisons to be
made against the user-defined characters as this would indeed appear to be
quite possible. It would, however, be fairly difficult to test for the normal
graphic characters as these are not stored in 8 byte forms but are constructed
when required.

Despite the amount of work involved in evaluating this function it is
surprisingly fast. This can be shown quite simply by:

13 PRINT “ @ ";SCREENS (0,0)
which appears almost instantaneous.
(See also appendix iv. The ‘SCREENS$’ error).
SGN
All positive numbers return the value ‘“+1’. All negative numbers return the
value ‘—1’, whilst zero gives zero.

42

SIN

The argument x is considered to be in radians and the function returns the
appropriate sine for that angle. This function is the fourth, and last, of the
functions that are evaluated by Chebyshev polynomials.

SQR
This function returns to the user the square root of the argument x. An alter-
native to SQR is to use * T .5’ and this is indeed how the SPECTRUM con-
sidered SQR in its calculator.

Square roots of negative numbers are not evaluated and give the ‘Invalid
argument’ error message.

STRS

The argument for this function is considered as a numerical expression. The
operation of STR$ involves evaluating the expression, printing it in the work
space as it would be expected to appear on the T.V. screen if requested, and
then returning to the user the parameters of the string.

TAN

The argument x is considered to be in radians and the function returns the
appropriate TAN for that angle. The tangent is found by finding both the sine
and the cosine of the angle, separately, and then dividing the one by the
other. The evaluation of a tangent therefore takes twice as long as that of a
sine or a cosine.

USR

In the SPECTRUM the token USR followed by a numeric expression is
quite distinct in its usage from that indicated by USR followed by a string
expression.

USR — number

This most important function can in essence be considered as a command.
The argument x, which is a numerical expression, is taken to be the address
of a user-written machine code program. When ‘USR — number’ is called the
Z80 stops its execution of the monitor program and, instead, executes the
instructions stored at location x and onwards. A machine code RETurn
instruction will cause a return to the monitor program.

Note that whilst in a machine code program written by the user it is quite
in order to modify the Y register as it is reset upon return by the monitor
program. (But the maskable interrupt must be disabled whilst the Y register
pair holds any value other than +5C3A.) However, the value in the alternate

HL register pair must be saved and restored correctly if a successful return to
BASIC is required.

43

The making of ‘USR — number’ a function rather than a command does
have the advantage that a value can be returned. In the SPECTRUM the value
is numeric and corresponds to the contents of the BC register pair.

USR — string
This function returns to the user the address in memory of the required user-
defined graphic.

The argument of ‘USR — string’ is required to yeild a string of one charac-
ter and that character must be in the range ‘A to U’, or ‘ato u’.

In the standard 16K SPECTRUM the user-defined graphic area will nor-
mally start at location 32,600, hex. 7F58, but as it can be moved it is better
to always consider the area as starting at the location addressed by the system
variable UDG, which is held in locations 23,675 & 23,676, hex. 5C7B—5C7C.

If the user-defined graphic area does start, for the purposes of this dis-
cussion, at location 32,600 then this location is given by USR “A". The eight
locations 32,600 to 32,607 will thereby hold the representation of the graphic
‘A’ that will be ‘A’ or as the user defines it. USR ““B"’ will return the address
32,608, USR ““C” gives 32,616, and so on for the twenty one graphic charac-
ters.

There would not appear to be a particularly easy method of defining
characters but the use of multiple data statements and BIN does at least give
a fair idea of the finished design. The following program illustrates this point
and produces a fair attempt at a “tick’.

PROGRAM TO DEFINE A GRAPHIC CHARACTER

1¢ DATA BIN @@@dddd

11 DATA BIN ggygyog

12 DATA BIN Z@@2@10¢

13 DATA BIN @@@¢718d

14 DATA BIN ZZ341¢88

15 DATA BIN Z14@140d

16 DATA BIN Z1Z14¢%

17 DATA BIN @U#1808%

18 FOR A=@ TO 7: READ B: POKE

USR "A"+A,B: NEXT A
19 PRINT CHRZ 144: REM = "A"

44

VAL

This function requires a string as its argument. The string is then treated as a
numeric expression, evaluated and returned to the user. This function is really
quite useful as it does allow for the evaluation of expressions that are held in
strings.

VALS
Whereas VAL is a useful function it would appear that this function can
always be circumvented by programming the statement in another way.
VALS requires a string as its argument and as this string must be enclosed
in quotes even a simple statement containing VAL$ may thereby have treble
quotes, twice. The function then returns to the user a string result.
Both VAL and VAL$ might indeed prove a little more useful if they did
not give the error message ‘Nonsense in BASIC' when the functions fail but
gave a null result.

2.4 The control characters

In the SPECTRUM there are eleven control characters that may be used.
The control character procedure is, perhaps, not very useful to the BASIC
programmer but it can be most useful when called from machine code.

CHRE 6 — print comma.
The print position is modified to be at the ‘next half screen’ position. Within
a PRINT statement the use of ;CHR$ 6; and ’,’ are interchangeable.

CHR$ 8 — backspace.
The print position is modified by backspacing one character area. This opera-
tion works even when backspacing to a previous line is involved. (But see
appendix iv. The ‘CHRS 8’ error.)

A particular use of CHRS 8 is to allow for ‘underlining’ as in the following
line.

10 PRINT ““*";CHR$ 8; OVER 1;”_""; OVER @; etc.

CHR$ 9 — rightspace

See appendix iv. The ‘CHRS 9’ error.
CHRS 13 — next line.

The print position is modified to be at the start of the next line. Within a
PRINT statement the use of ;CHR$ 13;" and **’"* are interchangeable but the
use of CHR$ 13 is somewhat clearer in a printed listing.

CHRZ 16 to CHR$ 21 — colour items.

These control characters produce ‘temporary colours’. They are, taken in
order, equivalent to: INK, PAPER, FLASH, BRIGHT, INVERSE & OVER.

45

Whenever one of these ‘colour item’ control characters is used it must be
followed by an appropriate ‘colour number’.

The following line shows the INK colour being set to RED.
18 PRINT “xxxx’;CHR$ 16;,CHR$ 2;"yyyy"’

CHR$ 22 — at.
The print position is modified to be that given by the following two charac-
ters. The first character gives the line number and the second character the
column number.
The following line shows how a statement equivalent to:
18 PRINT AT 12,6; ““Here"”
would be written.
10 PRINT CHRS 22;,CHR$ 12;CHRS 6; ‘‘Here"

CHRZ 23 — tab.
The print position is modified to be at the column given by the next two
characters. If the present column number already equals or exceeds the new
column number then the print position will be on the next line of the display.
A particular point to be made about TAB either used as a token, or as its
control character form, is that ‘space’ characters are written from the old
print position to the new position. This feature can on occasions be quite
annoying but at other times quite useful.
The following lines show this feature.
10 FOR A=0 TO 20
20 PRINT PAPER 7;TAB RND*7; PA
PER RND *6.5;TAB RND*20+9;A
30 NEXT A
Line 2@ could also be written as:
20 PRINT PAPER 7;CHR$ 23; CHR$
(RND*7);CHRS @; PAPER RND*6.5,CH
R$ 23; CHR$ (RND*2@+9);CHRS @;A

46

3. UNDERSTANDING — The Z80 microprocessor

3.1 Introduction

The Z80 microprocessor is the most important silicon chip in the SPECTRUM
microcomputer system. The Z80 microprocessor was developed by Zilog Inc.
of California, U.S.A. and has proved to be one of the most successful micro-
processors ever designed. In the SPECTRUM it is actually a Z80A produced
under a licence from Zilog Inc. that is used.

Once again it is possible to split the discussion on the Z80 microprocessor
into two parts. The first will give a ‘physical’ view of the chip and the second
a ‘logical’ view. Following on from the ‘logical’ view the structure of a mach-
ine code program will be discussed.

3.2 A ‘physical’ view of the Z80

The Z80 is a silicon chip with forty pins numbered from 1 to 40. Diagram 3.1
shows the pin arrangement of the Z80 and the ‘names’ attributed to the pins.
The functions of the pins, or lines, will now be discussed.

Pin 11 — the power line. A +bv. supply is required by the Z80 micropro-
cessor.

Pin 29 — the ground line.

Pin 6 — the clock input. In the SPECTRUM the clock rate is 3.5 mhz.
i.e. a clock pulse every 0.000000286 of a second.

Pins 7-10, 12-15 — These eight lines form the data bus that carries ‘data
bytes’ to and from the microprocessor.

Pins 1-5, 30-40 — These sixteen lines form the address bus that carries
‘addresses’ from the microprocessor to the memory.

The remaining thirteen pins are attached to lines that carry control signals.

Pin 21 — The ‘read’ line, RD. This line will be active whenever a byte of data
is to be read from memory.

Pin 22 — The ‘write’ line, WR. This line will be active whenever a byte of
data is being passed from the microprocessor to the memory.

Pin 19 — The ‘'memory request’ line, MREQ. This line is activated whenever
a byte of data is being passed to, or from, the microprocessor.

A byte of data is fetched from memory by first having the correct
address placed on the address bus. Then in response to the signals RD &
MREQ the appropriate memory chip will place the correct data byte on
the data bus from where it is read into the microprocessor. A byte of data
is written to memory by the microprocessor placing the required address
of the memory location destined to receive the data byte on the address
bus. The lines MREQ & WR are then activated and the data byte placed on
the data bus. Thereafter, if a memory chip is indeed being addressed, the
data byte will be copied into a memory location.

47

A11 =
A12 -2
A13 -3
A14 —4 -
A15 —5—
Clock -6 —
D4 o
D3 -8
D5 -9
D6 —10
+bv. — 11
D2 — el
D7 —13
DO — 14
D1 — 15 -
INT — 16 —
NMI =y
HALT — 18
MREQ —19 4
IORQ ~ 20 -

40— Al0
-39 — A9

- 38 — A8
37 — A7

- 36 — A6
35 — A5
34 — A4
33— A3
32 — A2
31— A1

- 30 — AO

- 29 — GND
28 — RFSH
27 — M1

- 26 — RESET
— 25 — BUSRQ
- 24 — WAIT
- 23 — BUSAK
- 22 — WR

- 21— RD

A0 — A15 are the 16 pins of the address bus and DO — D7 are the 8 pins of

the data bus.

Diagram 3.1 The 40 pins of the Z80

Pin 28 — The ‘refresh’ line, RFSH. This line is used to refresh dynamic
memories. In the SPECTRUM this line is partly involved in the generation
of the T.V. scanning signals.

Pin 27 — The ‘memory fetch’ line, M1. This is a most important line that is
active whenever a machine code instruction, or an associated byte of data,
is being fetched from memory.

The fetching of an instruction, or an associated byte of data, will
require the three lines M1, MREQ & RD all to be active, whereas the
fetching of a byte of data from a location that is in another part of the
memory will only require the lines MREQ & RD to be active. The time
taken in the SPECTRUM for an instruction to be fetched is 1.14 micro-
seconds which is four clock cycles, or T statées.

Pin 20 — The ‘input/output’ line, IORQ. This line is active whenever the
specialised IN and OUT instructions are being executed.

Pin 18 — The ‘HALT’ line, HALT. This line is active only when the HALT
machine code instruction is being executed.

Pin 25 — The ‘bus request’ line, BUSRQ. The Z80 allows for external devices
to use the address bus and data bus in a ‘cycle stealing’ operation. The re-
quest to the microprocessor is ‘steal the next cycle’ is made by the exter-
nal device by activating this line.

Pin 23 — The ‘bus acknowledge’ line, BUSAK. The microprocessor acknow-
ledges the ‘request’ by stopping the execution of further instructions and
activating this line.

The remaining four pins are all under the control of the user.

Pin 26 — The ‘reset’ line. RESET. This line is used to initialise the micro-
processor. It is therefore activated when the power is first connected to
the SPECTRUM. A ‘reset’ button can be provided for the SPECTRUM by
joining RESET and GND in a suitable manner.

Pin 24 — The ‘wait’ line, WAIT. A ‘slow’ memory may require extra time in
‘read cycles’ or ‘write cycles’ and this is signalled to the microprocessor
by making WAIT active.

Pin 17 — The ‘non-maskable interrupt’ line, NMI. This line, when active,
leads to the microprocessor stopping the execution of the current machine
code program. Instead the microprocessor executes an ‘interrupt handling’
routine written specially for this purpose. In the SPECTRUM system the
non-maskable interrupt handler forms a ‘system reset’ that is dependent on
the contents of location 23,728 being zero.

Pin 16 — The ‘maskable interrupt’ line, INT. In the SPECTRUM system the
scanning of the keyboard and the updating of the real-time clock are said
to be ‘interrupt driven’. By this is meant that the hardware of the system
contains a clock that every 1/60th. of a second activates INT causing the

49

microprocessor to stop the execution of the main machine code program
and, instead, execute the ‘keyboard scanning and real-time clock’ sub-
routine. The susceptibility of the Z80 to respond to the line INT can be
controlled by the programmer with special machine code instructions.

3.3 A ‘logical’ view of the 280

The internal structure of the Z80 microprocessor is amazingly complicated
but fortunately it can be divided into five functional parts. These parts are
the Control Unit, the Instruction Register, the Program Counter, the 24 User-
registers and the Arithmetic-logic Unit.

Diagram 3.2 shows this simplified view of the Z80 microprocessor.

Each of the five parts will now be discussed in turn.

The Control Unit

The Control Unit of the 280 can be likened, in a simplistic manner, to the
‘manager of a production line’. It is the responsibility of the Control Unit, the
manager, to arrange that materials (data bytes) are brought into the Z80, that
finished products (also data bytes) are sent out to the correct destinations
and to ensure that the ‘production’ is timed successfully.

In the Z80 the Control Unit produces a vast number of internal control
signals that go to the other parts of the internal structure as weli as the con-
trol signals that go out on the control lines RD, WR, MREQ, etc.

It is important to appreciate that the Control Unit, like the production
manager, is in no way responsible for deciding which work is to be done, but
only for doing the actual work. The Z80 has to follow the program as written
by the programmer and the production manager has to follow the ‘program’
as set out by his company directors.

The Instruction Register

The term ‘register’ is used to describe a single ‘location’ within the Z80
itself. It therefore is an actual place where the eight bits of a byte of data can
be held together. In the Z80 microprocessor there is a large block of registers
and the moving of bytes of data ‘into and out of’ the registers is the single
most important feature of machine code programming.

The Instruction Register is a special register within the microprocessor
that holds a copy of the machine code instruction currently being executed.
One feature of the Z80 machine code instruction set is that certain instruc-
tions are held in two bytes of data. In these cases the Instruction Register can
be considered as holding each of the bytes in turn.

When a machine code program is being executed the Instruction Register
will hold each instruction in turn.

50

8 line
DATA
BUS

16 line
ADDRESS
BUS

N\

CONTROL
UNIT

INSTRUCTION
REGISTER

PROGRAM
COUNTER

USER-
REGISTERS

ARITHMETIC-
LOGIC UNIT

CONTROL

SIGNALS

+bv.

GND.

CLOCK

Diagram 3.2 A simplified view of the Z80 microprocessor

51

The Program Counter
The Program Counter is not a single register but a pair of registers used to-
gether. The Program Counter can thereby hold 16 bit numbers.

The Program Counter has the specific purpose of holding the address of
the location in memory either of the current instruction being ‘executed’, or
of the next instruction to be ‘fetched’, depending on whether the Program
Counter has been advanced, or not.

When an instruction is to be ‘fetched’, the Control Unit uses the current
address in the Program Counter as the address of the location in memory that
holds the ‘instruction’ that is the next one to be executed. This instruction
is copied into the Instruction Register. It is then that the Control Unit
‘advances’ the Program Counter.

The actions of the Program Counter are very similar to those of the BASIC
interpreter’s system variable PPC which holds the line number of the current
BASIC line and is also ‘advanced’ once a line has been completed.

The User-Registers (Main Registers)

There are twenty four User-registers within the Z80 microprocessor. They are
termed ‘user’ registers because they can be filled with bytes of data specified
by the user, or programmer.

The names given to these twenty four registers are not, at a first glance,
logically arranged. The reason for this being that the Z80 microprocessor has
evolved from earlier, and less complicated, models. Certain of the names hark
back to the earliest microprocessors to be built whilst later names have been
added in an ‘ad hoc’ fashion, some names proving to be more appropriate and
informative than others.

All of the registers are single byte registers but they are commonly used as
register pairs.

Diagram 3.3 shows the twenty four User-registers of the Z80 microproces-
sor displayed as twelve register pairs. The ‘bit’ numbers are also shown.

Each of these registers will now be discussed briefly:

The A register

This register is the most important register of the Z80. It is often called the
‘accumulator’, a name that goes back to those models in which there was only
a single register that could be used to ‘accumulate’ a result.

In the Z80 the A register is used extensively for arithmetic and logical
operations, and indeed there are many operations that can be performed only
using the A register.

There is a great number of different ways in which a byte of data can be
entered into the A register by the programmer and hence there are many
machine code instructions that involve the A register.

52

Main set Alternate set
A F A' FI
76543210 76543210 76543210 76543210
H L H' L/
76543210 76543210 76543210 76543210
B G B’ c’
76543210 76543210 76543210 76543210
[
D E D’ E’
‘76543210 76543210 76543210 76543210
IX
]S s e 0
Y
U spiritiaiis e ittt 0
SP
e LS e Rt 0
| R

76543210 76543210

Diagram 3.3 The 24 User-Registers of the Z80

53

The F register
This is the ‘flag register’ and it is often considered as a collection of eight flag
bits held together rather than as a true register.

The concept of flags will be dealt with in chapter 5, but simply a flag bit
can be ‘set’, holding value ‘1’ or ‘reset’, holding value ‘0".

The flag register does hold eight bits but the programmer is normally only
concerned with the ‘four major flags’. These are the Zero flag, the Sign flag,
the Carry flag and the Parity/Overflow flag.

The ‘minor flags’ are used by the Control Unit and cannot be used by the
programmer in a direct manner.

The HL register pair

In early microprocessors there was a single ‘addressing register’ that could
address 256 locations in memory. However, when 2-byte addressing was
introduced it became possible to address individually 65,536 locations in
memory in a straightforward manner. In a 2-byte address register micropro-
cessor one of the registers is a High address register and the other a Low
address register. The ‘H’ and ‘L’ names of the Z80 are thereby derived from
the words ‘high’ and ‘low’. It is interesting to note that the ‘high’ register, by
being a later development, has led to the situation where an address is nor-
mally given with the ‘low’ part preceding the ‘high’ part.

A memory of size 65,536 locations can be considered as being divided into
256 pages of 256 locations and in such a case the value held in the ‘high’ add-
ress byte can be described as indicating which ‘page’ of memory is being used.

In the Z80 microprocessor the HL register pair is just one of three register
pairs that are commonly used as addressing registers. However the HL register
pair is the most important. The HL register pair can also be used to hold 16 bit
numbers, rather than addresses, and there are a certain number of arithmetic
operations that can be performed on these numbers. The H register and the L
register can also be used as single registers although there are only a limited
number of operations that can be performed.

The BC and DE register pairs

These register pairs are used mainly as addressing registers. It would appear

that their names have come about solely because of the existence of an A

register. Although ‘DE’ is clearly a suitable abbreviation for ‘destination’.
Once again the individual single registers can be used by the programmer

and it is especially common for the B register to be used as a loop counter.

The alternate register set

The Z80 is an interesting microprocessor as it has an alternate set of registers
for the A, F, H, L, B, C, D & E registers. These alternate registers are desig-
nated A’, F’, H’, L', B, C’, D' & E’, and spoken of as the A-prime register
etc.

54

There are two special machine code instructions that allow for the con-
tents of the alternate set of registers to be exchanged with the contents of the
current set of registers. Once the registers have been ‘exchanged’ the Z80 will
work with the ‘former alternate set’ believing it to be the ‘main set’. The
‘former main set’ will now be treated as an ‘alternate set’.

The programmer may exchange the register sets, totally or in part, as often
as is wished in a particular program.

The concept of there being alternate registers may sound very simple but
in practice the use of the alternate set of registers can be most confusing. The
biggest problem is that it is for the programmer to remember which set of
registers is being used as there are not any machine code instructions that
only work on one set of registers and not the other.

The alternate set of registers is often used to ‘save the environment’ when
starting an unrelated task. A particular example from the 16K monitor
program of the SPECTRUM is that when the floating-point calculator is being
used the H’ & L’ registers hold the ‘return address’. Therefore if these regis-
ters are corrupted then a return to BASIC will not be possible.

The IX and 1Y register pairs

These two register pairs are used to perform operations that involve ‘indexing’.
This is a facility which allows for entries in a list or table to be manipulated.
The base address of the list or table must first be placed in the appropriate
IX or 1Y register pair.

In the 16K monitor program of the SPECTRUM the |Y register pair is
normally set to hold decimal 23,610, hex. 5C3A, which makes this address
the base address for the table of system variables. The X register pair is used
extensively as a pointer in the LOAD, SAVE, VERIFY & MERGE command
routines.

The Stack Pointer

This register is yet another addressing register. It is used to point to locations
in the machine stack area of the memory and is always considered as a single
2-byte register.

The Z80 microprocessor uses a stack that ‘grows downwards’ in memory,
so an analogy might be a high block of appartments in which the first tenant
moves into the top apartment, the next tenant into the one below and so on
downwards. The stack is used on a ‘last-in first-out’ principle, so the first
tenant to move out will always be the latest tenant to have moved in.

The Stack Pointer is used to point to the different locations in the stack
area in a special manner. The Stack Pointer always holds the address of the

55

last location to have been filled. Therefore when a new entry is to be made
the Control Unit reduces the value held in the Stack Pointer before the entry
is made. In the Z80 system each transfer to or from the stack involves two
bytes of data and therefore the Stack Pointer has to be reduced twice when
data is passed to the stack and increased twice when data is copied from the
stack.

The machine stack is normally used by the microprocessor as an area in
which to hold the return addresses for subroutines but the programmer is
quite at liberty to place numeric data on the stack and thereby use it as a
work space. However it is a common programming error to then try to use
this data as a return address without first ensuring that the Stack Pointer does
indeed point to the required location.

The | register

This is the Interrupt Vector register. In Z80 based systems other than the
SPECTRUM this register would normally be used to hold the base address
of a table of addresses for handling different input/output devices. However
in the SPECTRUM this facility is not used and the | register is involved with
the generation of the T.V. frame signals.

The R register
This is the Memory Refresh register. This register is a simple counter that is
incremented every time a ‘fetch cycle’ occurs. The value in the register cycles
over and over from 0 to 255.

The R register is used to generate part of the address required to address
dynamic memory so that it can be ‘refreshed’ (recharged).

The Arithmetic-logic Unit (ALU)
This part of the Z80 is concerned, as its name implies, with arithmetic and
logical operations.

It is important to realise that the operations that can be performed by the
ALU are very limited. Simple binary addition and subtraction are possible but
multiplication and division are not. Incrementation (adding 1) and decre-
mentation (subtracting 1) are also readily handled. The unit is also able to
perform a large number of ‘bit’ operations and thereby set ‘flags’ to show the
result.

3.4 The structure of a machine code program

As has been stated above the Z80 microprocessor works as a computer as it is
a machine capable of following a stored program. This program must exist
as a set of machine code instructions, and any associated data, held in con-
secutive locations in memory. In a Z80 based microcomputer system these

56

locations in memory hold 8 bits, or 1 byte of data. A machine code program
therefore consists of a set of data that appears as a series of 8-bit numbers.

The most elementary description of a machine code program shows the
actual bit representation. The following example shows this for the first
eight locations of the 16K monitor program of the SPECTRUM.

decimal binary
Location 0 — 11110011
Location 1 — 1010 1111
Location 2 — 0001 0001
Location 3 — 1111 1111
Location 4 — 11111111
Location 5 — 11000011
Location 6 — 1100 1011
Location 7 — 0001 0001

The above representation is a perfectly valid manner of showing a machine
code program but it is a very laborious form and prone to error. It is also
undocumented and therefore not too informative.

The next sample shows the same piece of the monitor program expressed
in decimal and hexadecimal notation. But once again it is undocumented and
unhelpful.

decimal hex. decimal hex.
Location 0 0000 -— 243 F3
Location 1 0001 — 175 AF
Location 2 0002 — 17 11
Location 3 0003 — 255 FF
Location 4 0004 - 255 FF
Location 5 0005 -— 195 C3
Location 6 0006 — 203 CB
Location 7 0007 — 17 11

The decimal results can he shown by the following BASIC program that
PEEKSs locations O to 7.
10 FORA=GTO 7
20 PRINT “LOCATION";TAB 1G;A;T
AB 15,;PEEK A
30 NEXT A

57

The BASIC program to show the hexadecimal results is a little more com-
plicated.
10 FORA=0TO 7
20 LET H=INT (PEEK A/16)
30 LET L=PEEK A-H*16
40 PRINT “LOCATION": TAB 1G.A;T
AB 15;CHRS (48+H+7*(H >9));CHRS (
48+L+7*(L >9))
50 NEXT A

These two programs have been included here as they show the usual manner
of producing a decimal or a hexadecimal listing of a machine code program.

Next comes the stage of documenting the listing that has been given in
the example.

By reference to a table of Z80 machine code instructions (see appendix i
of this book, or appendix A of ‘BASIC programming’) it can be found that
the machine code instructions contained in the first eight locations of the
16K ROM are:

mnemonic comment
Location 0 — DI Disable maskable interrupt.

Location 1 — XOR A Exclusive OR the A register.

Location 24 — LD DE,+FFFF Load the DE register pair with a
constant.

Location 5-7 — JP +11CB Make an absolute jump.

In the above description a ‘mnemonic’ has been given to each of the machine
code instructions. A ‘mnemonic’ is a stylised way of representing an instruc-
tion in a helpful manner. All:the machine code instructions of the Z80
instruction set have their own mnemonics and a machine code program is
normally described using these mnemonics rather than the binary, decimal
or hexadecimal numbers.

Note that in the above description two of the ‘instruction lines’ use a
single location each, whilst the other two ‘instruction lines’ each take three
locations. In the latter cases the first location of the three holds the actual
instruction code proper and the remaining two locations the data associated
with the instruction.

The usual form for showing a machine code program can now be given for

this example.

address machine code mnemonic comment

0000 F3 DI Disable the interrupt,
0001 AF XOR A Exclusive OR.

0002 11 FF FF LD DE,+FFFF Top of memory address.
0005 C3CB 11 JP +11CB Jump forward.

58

This form is called the ‘assembly format’ and normally has the addresses of
the locations holding the first byte of the instruction line given in hexadeci-
mal, the instruction codes and their associated data also given in hexadecimal,
the mnemonics of the instructions and finally a ‘comment field’ where the
programmer can write additional details.

The above examples show how the ‘assembly format’ for a given block of
Z80 machine code can be derived — an operation that is normally termed
‘disassembly’ and a computer program that would perform the task is termed
a ‘disassembler’. (see appendix iii for further details)

The operations detailed above would be undertaken in reverse order when
a machine code routine is being written.

First, the programmer would write the program using mnemonics. Then
the actual code in binary, decimal or hexadecimal would be found. A com-
puter program that accepts statements containing mnemonics and produces
the required machine code — the object code — is called an ‘assembler’.
(again see appendix iii for further details)

Note that the ‘assembly format’ given above is often extended to include
‘labels” and ‘variables’. The example used above might then be written as:

comment
START equ. 0000 Naturally location zero.
START/NEW equ. 11CB Continue here.
TOP—MEM equ. FFFF Decimal 65,535.
address label mnemonic comment
0000 START DI Disable the interrupt.
0001 XOR A Exclusive OR.
0002 LD DE,+TOP—MEM Top of memory address.
0005 JP START/NEW Jump forward.

When discussing ‘assembly format’ it must be appreciated that it is not a fully
defined format and that different ‘assembler’ programs will have slightly
different requirements and limitations.

59

4. UNDERSTANDING — The mathematics of machine code
programming

4.1 Introduction

In a Z80 based microcomputer system such as the SPECTRUM all the data
transfers involve the moving of 8-bit data bytes. The most accurate repre-
sentation of these data bytes is made by using 8-bit binary numbers. But
numbers in this particular form are difficult to handle and hence machine
code programmers normally use a hexadecimal representation.

In this chapter the different sections will in turn deal with hexadecimal
coding, absolute binary arithmetic, 2's complement arithmetic, integral
representation and floating-point representation. The first three topics apply
to any 8-bit microcomputer system, whereas the latter two topics are some-
what different in the SPECTRUM system.

4.2 Hexadecimal coding

The principle behind hexadecimal coding is to describe numbers ‘to the base
sixteen’ rather than ‘to the base two’ as in binary coding or ‘to the base ten’
as in the decimal system.
In hexadecimal coding the first nine characters are the digits 0, 1, 2, 3, 4, 5,
6, 7, 8 & 9 and the additional six characters are the letters A, B, C, D, E & F.
The following table shows the binary, decimal and hexadecimal representa-
tions for the numbers one to fifteen.

binary decimal hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

D
o

As can be seen in the previous table a single hexadecimal character forms a
representation for a 4-bit binary number. It therefore follows that an 8-bit
binary number is represented by a pair of hexadecimal characters and a 16-bit
binary number by four hexadecimal characters.
The examples below illustrate these points:

0000 0000 (binary) = 00 (hex)

0100 1111 (binary) = 4F (hex)
0000 0000 0000 0000 (binary) = 0000 (hex)
0100 1100 1010 1111 (binary) = 4CAF (hex)

The conversion of a number in one number system to another is difficult for
most people to do even after some months or years of practice but it is a
very useful skill. It is however relatively simple to write computer programs
to do the required tasks.

The following BASIC program is a DECIMAL—TO—HEX. conversion
program.

DECIMAL—TO—HEX. PROGRAM
1¢ INPUT "Decimal number™,D

2¢ IF D»65535 THEN GO TO 17¢
3% PRINT "Decimal",D
4% DIM H(4)
5¢ DIM HZ(4)
6@ LET H(1)=INT (D/4996)
74 LET D=D-H(1)*4996
8¢ LET H(2)=INT (D/256)
97 LET D=D-H(2)%256
1% LET H(3)=INT (D/16)
11¢ LET D=D-H(3)*16
1274 LET H(4)=D

61

137 FOR A=1 TO 4

1474 LET HZ(A)=CHRZ (H(A)+48+7*
H(A)>9))

154 NEXT A

167 PRINT "Hexadecimal",HgZ

17¢ PRINT

18¢ GO TO 1¢

In the program the decimal number is successively reduced to find the ‘hexa-

decimal values’. In lines 130—150 these values are converted to ASCII charac-
ters.

The next BASIC program shows HEX—TO—DECIMAL conversion.

HEX—-TO—-DECIMAL PROGRAM
14 DIy HZ(4)
of INPUT "Hex. characters",H3
34 IF CODE Hg=32 THEN GO TO 2
4F4 LET D=y
FOR A=1 TO 4
6¢ IF HZ(A)=CHRZ 32 THEN GO IO
144
74 IF HZ(A)<"g" OR HZ(A)»"9" A
ND HZ(A)C"A" OR HA(A)>"F" THEN G
0 TO 12¢
84 LET D=D+164(4-A)*(CODE HZ(A

62

)=48-T7*(CODE HB(A)»57))
94 NEXT A
14# PRINT "Hexadecimal",Hg
114 PRINT "Decimal",D
12¢ PRINT

134 GO TO 2¢

In the program the hexadecimal character string, H$, always has four charac-
ters. If characters are unspecified by the user the hexadecimal string will
appear left-justified.
The last example in this section shows how a hexadecimal number can be
converted to decimal be ‘longhand’.
Hexadecimal number = 789A

Decimal equivalent = 7 *4,096 = 28,672
8 * 266 = 2,048
9 '* 16 = 144
Sy - e 10
789A = 30,874

Or if taken in pairs:
Decimal equivalent = 78 * 256 = 30,720
+ OA * 1 = 154
789A = 30,874

Appendix ii contains DECIMAL-HEXADECIMAL conversion tables.

4.3 Absolute binary arithmetic

A single memory location, or a single register within the Z80 itself, holds an
8-bit binary number. This number can be considered as having the binary
range 0000 0000 — 1111 1111, the decimal range 0—255 or the hexadecimal
range of 00—FF. In none of the cases can the number be taken as being nega-
tive, or fractional, and this forms the fundamental point of ‘absolute binary
arithmetic’ — the value in a memory location or single register, is always
POSITIVE and is an INTEGER.

63

It is also important to realise that the value held in a memory location, or
a single register, behaves in a ‘circular’ manner whenever 0 or 255 is reached.
That means if an additional operation takes the value past 255 the final value
is decreased by 256, whilst for a subtraction operation taking the value below
zero the final value is increased by 256.

The following examples show this point.

Dec. 252 + 44 will give 40
or
Hex. FC + 2C will give 28

Dec. 87 — 200 will give 143
or
Hex. 57 — C8 will give 8F

The Carry flag is affected by most operations that require a ‘carry’. For
further details see chapter 5.

In a Z80 based system all of the numbers are in ‘absolute binary arithmetic’
but the programmer will often need to place a different interpretation upon
the numbers being used so as to view them as ‘positive or negative’ and
‘integer or fraction’. The next three sections in the chapter show the differ-
ent interpretations used in the SPECTRUM system.

4.4 2's complement arithmetic

The concept behind 2's complement arithmetic is very simple. But, when it
is being used in a machine code program the results can be most confusing.

The method allows for the programmer to consider the numbers in the
binary range 0000 0000 — 1111 1111 as the equivalent of decimal 0—127,
and the binary range 1000 0000 — 1111 1111 as the equivalent of decimal
—128 to —1.

A result of this interpretation is to make ‘bit 7’ (the lefthand bit of an
8—bit number) act as a ‘sign bit’. This bit will be reset, 0, for positive num-
bers and set, 1, for negative numbers.

Diagram 4.1 illustrates 2's complement arithmetic as applied to a single
8-bit number.

Note that it is quite possible to extend the principle of signed 2's comple-
ment arithmetic to 16-bit numbers when the range obtained will be —32,768
to +32,767 decimal.

The conversion of a negative decimal number to its 2’s complement binary
or hexadecimal forms is straightforward but it is often easier to refer to a
suitable table. (see appendix ii. for such a table)

The steps involved are:

64

e

1. Find the binary form for the absolute decimal value.
e.g. —54 will give 00110110

2. 1's complement the binary number — change the zeros to ones and vice
versa.
e.g. 00110110 will give 1100 1001

3. Add 6ne in absolute binary arithmetic.
e.g. 1100 1001 + ‘1" will give 1100 1010

4. Use this binary form or consider it in hexadecimal.
e.g. —54 in 2's complementis 1100 1010 or CA.

The operations may be taken in the reverse order when converting 2's com-
plement numbers to decimal numbers.

4.5 Integral representation

The BASIC interpreter of the SPECTRUM system uses five bytes to represent
numbers. Integral numbers, i.e. any integer between —65,535 and +65,5635
inclusive are normally held in an ‘integral form’ whereas any fractional num-
bers or integers outside the integral range are held as five byte floating-point
numbers.

In the integral form the first byte is always zero. The second byte holds
zero if the integer is positive and decimal 255, hex. FF, if the integer is nega-
tive. The third and fourth bytes hold the actual integer value as an unsigned
16-bit 2's complement number but note that the third byte is always the low
byte and the fourth byte the high byte. The fifth byte is unused but always
holds zero.

The following demonstration program shows the integral form, in decimal,
for any suitable integer entered by the user. Line 2@ of the program ensures
that an integral form is given.

INTEGRAL FORII PROGRAILI
1¢ INPUT N
2¢ IF N<»INT N OR N¢-65535 OR
N»65535 THEN GO TO 1%
3% PRINT "Number chosen =",N
4% LET V=PEEK 23627+256%PEEK 2
3628

65

Positive
numbers

Negative
numbers

Diagram 4.1 2's complement arithmetic (single byte)

BINARY DECIMAL HEX.
(01111111 +127 7F
]

10111 1110 +126 7E
I ! |
| : ! |
[| '
e . |
! I | '
[: | |
| ‘ | |
:oooo 0010 +2 02
L0000 0001 +1 01

0000 0000 0 00
f1111 1111 -1 FF
|
(11111110 L9 FE
| | ; |
| I | |
L | |

1000 0001 {27 81		
(1000 0000 —128 80
A
Sign bit

5@ FOR A=1 TO 5

6¢ PRIND A;".";TAB 5;PEiEK (A+V)
7¢ NEXT A

8¢ GO TO 1¢

In the above program the pointer V points to the start of the variables area

and locations ‘V+1’ to ‘V+b’ will hold the five bytes of the input number N.
The program gives results in the form:

umber chosen @

N
1

2
3
4
5

aeaaa

$0 zero is positive and has the value 0*1 + 0*256

Number chosen = 1516

1.0

2.0

3. 236

4. 5

5.0

so 1516 is positive and has the value 2361 + 5*256.

Number chosen = —1

1.0

2. 255

3. 255

4. 255 <

5.0

so —1 is negative and has the 2's complement form of hex. FFFF.
Note: There is a programming bug concerning the handling of —65,536.

This number does not get given the integral form: @, 255, @, @, 0

{see appendix iv. for further details)

/

4.6 Floating-point representation

The five byte floating-point representation as used in the SPECTRUM sys-
tem allows for all numbers in the range .29E—38 to 1.7E38 (roughly!).

67

The value zero is always stored as five bytes all set to zero. All other values
are stored with an exponent part in the first byte and a mantissa part in the
other four bytes.

The theory of describing numbers in terms of their exponents and man-
tissas will first be dealt with in decimal notation as that form is easier to
manage initially.

Finding the exponent and mantissa for a decimal number is in essence the
conversion of the decimal number into its E-format.

Hence, consider the number 1234.5 which can be expressed in E-format as
.12345 E+4. To obtain the mantissa part the decimal point is moved left-
wards until it comes to be in front of the most significant figure. The expon-
ent is the number of moves required and the mantissa is the fractional deci-
mal number.

Exp. = +4 ; Mantissa = .12345

As the SPECTRUM system deals with binary numbers rather than deci-
mal numbers the same operations will now be considered for a simple binary
number.

Hence, consider the binary number 0001 1111 which is equal to +31.

The binary point is taken to lie to the right of the 8-bits and it takes +5
moves to put it ahead of the most significant bit.

At this stage the exponent and mantissa are:

Exp.=+b ; Mantiss=.11111000......
In the SPECTRUM these parts are manipulated a little further. So for the
exponent:

The true exponent, +5 above, is always increased by decimal 128, hex.80,
to give the augmented exponent. In the example case +5 + 128 = 133.

And for the mantissa.

The first bit of the mantissa will always be a set bit so it is taken over for
use as a sign bit; i.e.

when dealing with a positive number this bit is reset,
whilst for a negative number it is left set.

In the example case the mantissa becomes .0111 1000 It now re-
mains to express the number in five bytes. The unused bytes of the mantissa
being set to zero.

In decimal the floating-point form of +31 will be:

133,120,0,0,0
and in hexadecimal:
85, 78, 00, 00, 00
or if wanted in binary:
10000101 0111 1000 0000 0000 0000 0000 0000 0000

The same operations apply to negative and fractional numbers although

the steps are not as easy to follow as with a simple integer as above.

68

The following demonstration program shows the decimal form of floating-
point numbers. The inclusion of line 3@ ensures that the integral form is not
given in response to suitable integers.

FLOATING-POINT FORM PROGRAM

1¢ INPUT N

2 IF N=g THZIN 30 T0 4¢

3@ LET N=N+,2E-38

A7 PRINT "Number chosen =l

54 PRINT

64 PRINT "Exp.";TAB 9;"liantiss
an

78 LET V=PEEK 23627+256%PEEK 2
3628

8% PRINT PEEK (V+1);TAB 9;

97 FOR A=2 TO 5
1474 PRINT PEZK (V+A);CHRZ 32;
11 NELT A
124 PRINT *'!
134 GO TO 1¢

The above program shows that for the following numbers the floating-point
forms are:

69

Exp. Mantissa
1 = 129 0000
2 = 130 0000
35456 = 144 101280 0
-1 = 129 128000
—35456 = 144 1381280 @
6.333 = 131 74 167 239 158

It is interesting to note that .5 is different to 1/2 (again see appendix iv. for
further details).

5

. 127 127 255 255 255
1/2

128 0000

70

5. UNDERSTANDING — The Z80 Machine Code Instruction Set

5.1 Instructions and data

The stage has now been reached when the instructions of the Z80 machine
code language can be discussed in turn.

In this book the instructions are divided into 18 groups, with each group
containing those instructions that have a strong resemblance to each other.
However, before discussing the groups of instructions mention must be made
of the six classes of data that may follow the instruction proper in a line of
Z80 machine code.

The classes of data are:

1. A single byte constant. (+dd)
i.e. A number in the range hex. 00—FF, dec. 0—255. Those instructions
that are required to be followed by a single byte constant have this indi-
cated in their mnemonics by there being a ‘+dd".
e.g. The instruction menmonic — ‘LD A,+dd’

2. A 2—byte constant. (+dddd)
i.e. A number in the range hex. 0000—FFFF, dec. 0—65,5635. Those
instructions that are required to be followed by a 2-byte constant have this
indicated in their mnemonics by there being a ‘+dddd’.

e.g. The instruction mnemonic — ‘LD HL,+dddd’

3. A 2—byte address. (addr)
i.e. A number in the range hex. 0000—FFFF, dec. 0—65,535, that will be
used as an address of a location in memory. Those instructions that are
required to be followed by a 2—byte address have this indicated in their
mnemonics by there being an ‘addr’.

e.g. The instruction mnemonic — ‘JP addr’

4. A single byte displacement constant. (e)
i.e. A number in the range hex. 00—FF, dec. —128 to +127. The number is
always considered to be in 2's complement arithmetic.

Those instructions that are required to be followed by a single byte
displacement constant have this indicated in their mnemonics by there
being an ‘e’.

e.g. The instruction mnemonic — ‘JP e’

5. A single byte indexing displacement constant. (+d)
i.e. A number in the range hex. 00—FF, dec. —128 to +127. The number is
always considered to be in 2's complement arithmetic.

Those instructions that are required to be followed by a single byte in-
dexing displacement constant have this indicated in their mnemonics by
there being a ‘+d’.

" e.g. The instruction mnemonic — ‘LD A, (1X+d)’

71

6. A single byte indexing displacement constant AND a single byte constant.
(+d,+dd)
i.e. Two numbers in the range hex. 00—FF, with the first number being
considered as dec. —128 to +127 and the second number as dec. 0-255.
Instructions that are required to be followed by two bytes of data for
this purpose have this indicated in their mnemonics by there being a ‘+d’
and a ‘+dd’.
e.g. The instruction mnemonic — ‘LD (I1X+d),+dd’

5.2 The instruction groups

There are many ways in which the hundreds of different machine code in-
structions may be split into groups. However, the method chosen here is to
split the instructions into 18 functional groups.

After studying the instructions in a single group, the reader is advised to
RUN the BASIC programs from the following chapter that illustrate those
instructions.

Group 1. The NO OPERATION instruction.
mnemonic instruction hex.
NOP 00

The NO OPERATION instruction, when executed by the microprocessor,
results in the Z80 marking time for 1.14 microseconds. None of the
registers or flags are affected.

The NO OPERATION instruction can be used by the programmer as part
of a timed loop or, as is more often the case, to ‘delete’ unwanted instructions
from a machine code program.

A BASIC program that demonstrated this instruction is to be found on
page 111

Group 2. The instructions for loading registers with constants.
The following instructions are involved in loading registers with single byte
constants.

mnemonic instruction hex.
LD A,+dd 3E dd
LD H,+dd 26 dd
LD L,+dd 2E dd
LD B,+dd 06 dd
LD C,+dd OE dd
LD D,+dd 16 dd
LD E,+dd 1E dd

72

An instruction line with one of these instructions will require two locations in
memory. One for the instruction proper and a second for the constant. The
instructions above can be viewed as ‘setting’ the contents of a particular regis-
ter to a given value. This value will then remain in the register until over-
written.

The following instructions are involved in loading register pairs with 2—
byte constants.

mnemonic instruction hex.
LD HL,+dddd 21 dd dd

LD BC,+dddd 01 dddd

LD DE,+dddd 11 dddd

LD IX,+dddd DD 21 dd dd
LD 1Y,+dddd FD 21 dd dd
LD SP,+dddd 31 dd dd

An instruction line with one of these instructions will require three or four
locations in memory. The instruction proper needing one or two locations
and the constant a further two locations.

The first byte of the constant goes always to the ‘low’ register of the regis-
ter pair, i.e. L,C,E,X,Y or P, and the second byte to the ‘high’ register, i.e.
H.B,D,lorS.

These instructions ‘set’ the contents of the register pairs to given values.
These values are often viewed by the programmer as 2—byte addresses but
they may also be 2—byte numerical values or two separate 1—byte numerical
values.

The instructions in this group do not affect the flags. BASIC programs that
demonstrate the instructions in this group are to be found on page 112.

Group 3. Register copying and exchanging instructions.
In the Z80 instruction set there are 59 instructions that are involved in the

copying of the contents of a register, or register pair. These instructions are
best divided into four subgroups.

Subgroup a. Single register-to-register copying instructions.

The following table gives the instruction codes for the instructions that
lead to the copying of the contents of a single register, r, to another specified
register.

73

r LD LD LD LD LD LD LD
register Ar Hr L,r B,r Cr D,r E,r
A 7F 67 6F 47 4F 57 5F
H ¢ 64 6C 44 ac 54 5C
L 7D 65 6D 45 4D 55 5D
B 78 60 68 40 48 50 58
c 79 61 69 41 49 51 - 59
D JA 62 6A 42 4A 52 5A
E 78 63 i 4B 53 58

None of the instructions in the above table affect the flags. There are also
four instructions that involve the | & the R registers.

mnemonic instruction hex.
LD A,I ED 57
LD AR ED 5F
LD LA ED 47
LDR,A ED 4F

These last four instructions do affect the overflow/parity flag.

Subgroup b. Register pair-to-register pair copying instructions.
There are only three instructions in this subgroup and they all involve
copying values to the stack pointer.

mnemonic instruction hex.
LD SP,HL F9

LD SP,IX DD F9

LD SP,IY FD F9

These instructions do not affect the flags.

Note that if the contents of a register pair is to be copied to another
register pair and the above instructions are inappropriate then the operation is
normally performed by two single register-to-register copying instructions.

e.g. There is no instruction ‘LD HL,DE’
and this is normally dealt with by using ‘LD H,D" and ‘LD L,E’.

Alternatively the contents of the first register pair can be saved on the
machine stack and subsequently copied to the second register pair. (See “The
‘stack’ instructions’’ on page 96.)

Subgroup c. The ‘EX DE,HL’ instruction.
In the Z80 instruction set there is only one instruction that allows for the
contents of registers to be exchanged — within the ‘main’ set of registers.

74

mnemonic instruction hex.
EX DE,HL EB

This very useful instruction allows the programmer to exchange the value
held in the DE register pair with that held in the HL register pair. No flags
are affected.

This instruction is normally used when an address or 2—byte numerical
constant has to be moved from the DE register pair to the HL register pair
but the original value in the HL register is not to be lost.

Subgroup d. The ‘alternate’ register set instructions.
There are two instructions in this subgroup.

mnemonic instruction hex.
EXX D9
EX AF,A‘F’ 08

The ‘EXX’ instruction causes a switching over of the H,L,B,C,D & E registers
with the H’,L’,B",C’,D’ & E’ registers.

The ‘EX AF,A’F’ ' instruction does as its mnemonic suggests and switches
the A & F registers with the A’ & F' registers.

The alternate registers are often used to store addresses and numbers. By
storing these values in the alternate registers they are safe from corruption
and can be retrieved very easily and quickly.

The BASIC programs that demonstrate the instructions from this group
are to be found on page 113.

Group 4. Instructions for the loading of registers with data copied from a
memory location.
The Z80 instruction set contains many instructions that ‘fetch’ data from
locations in the memory and then ‘load’ that data into a main register. All of
the instructions require that the programmer specifies the address of the loca-
tion, or a pair of locations, from which the data is to be copied and the
register, or register pair, that is to receive the data.
The instructions in this group are best considered in three subgroups as
there are three separate addressing techniques available to the programmer.
These addressing techniques are:

a) ‘Absolute addressing’ — the actual 2—byte address is specified following
the instruction proper.

b) ‘Indirect addressing’ — the 2—byte address is already available in an
‘addressing register pair’.

c¢) ‘Indexed addressing’ — the address of the location is to be computed by
adding the displacement value, d, to the base address already held in the
IX, or 1Y, register pair.

75

Subgroup a. Instructions using ‘absolute addressing’.
The instructions in this subgroup are:

mnemonic instruction hex.

LD A, (addr) 3A addr :
LD HL,(addr) 2A addr (usual form)

ED 6B addr (unusual form)

LD BC,(addr) ED 4B addr

LD DE,(addr) ED 5B addr

LD IX,(addr) DD 2A addr

LD 1Y, (addr) FD 2A addr

LD SP,(addr) ED 7B addr

The ‘LD A,{(addr)’ instruction is the only instruction in the Z80 instruction
set that allows for the contents of a location speficied as an absolute address
to be loaded into a single register.

An important point to make about the remaining six instructions in this
subgroup is that they are really double instructions.

e.g. The instruction ‘LD BC,(addr) shquld be considered as: ‘LD C,

(addr)’ followed by ‘LD B,(addr+1)’.

In every case the contents of the addressed location is copied to the ‘low’
register and the contents of the following location is copied to the ‘high’
register.

Subgroup b. Instructions using ‘indirect addressing’.
The instructions in this subgroup are:

mnemonic instruction hex.
LD A,(HL) 7E
LD A,(BC) 0A
LD A,(DE) 1A
LD H,(HL) 66
LD L,(HL) 6E
LD B,(HL) 46
LD C,(HL) 4E
LD D,(HL) 56
LD E,(HL) 5E

In each case the address of the location from which the single byte of data
is to be copied is to be already present in the HL, DE or BC register pairs.

If the programmer should wish for an operation that is not supported by
an instruction in the above list then a ‘construction’ will have to be used
instead.

e.g. The operation ‘LD D,(BC)’ is not allowed and a possible ‘construc-
tion’ is;
is ‘LD A,(BC)’ followed by ‘LD D,A’ which would alter the contents of

76

the A register, or;
‘LD H,B’ ‘LD L,C’ followed by ‘LD D,(HL)" which would alter the
contents of the HL register pair.

Subgroup c. Instructions using ‘indexed addressing’.

The instructions in this subgroup allow the programmer to load single
registers with bytes of data held as a table, list or just a block of data. The
base address is held in the appropriate indexing register pair.

Diagram 5.1 illustrates this being done.

The instructions in the subgroup are:

mnemonic instruction hex.
LD A, (IX+d) DD 73d
LD H,(IX+d) DD 66 d
LD L,(IX+d) DD 6E d
LD B,(IX+d) DD 46d
LD C,(I1X+d) DD 4Ed
LD D,(IX+d) DD 56d
LD E,(IX+d) DD 5E d

For instructions involving the |Y register pair change. IX to Y and DD to FD.

It is interesting to consider the time taken by the Z80 microprocessor in
executing the instructions in this group. The fastest instructions are those
that form subgroup b. These instructions require the Z80 to fetch a single
byte instruction code and then the actual byte of data. The instruction ‘LD
A,(HL)’, for example, taken only 7 clock cycles.

The instructions in subgroup a. are much more complicated and take,
depending on the instruction, 16-20 clock cycles. The instructions in sub-
group c. also take a long time — 19 clock cycles — as indexed addressing in-
volves the Z80 in a considerable amount of computation.

None of the instructions in this group affect the flags.

The BASIC programs that demonstrate the instructions from this group
are to be found on page 114 .

Group 5. Instructions for loading locations in memory with data copied
from registers, or with constants.

In general the instructions in this group perform operations that are opposite
in action to those in group 4.

The instructions allow for the contents of the user-registers to be copied
to specified memory locations, or for constants to be loaded into those
locations.

Once again the instructions are best considered in three sub-groups.

Subgroup a. Instructions using ‘absolute addressing’.
The instructions in this subgroup are:

77

TOP
3
IY + 7F
1Y + 7E
Table, list or
? a block of 256
locations.
1Y + 02
1Y + 01
Y —> 1Y + 00
y
holds this

address B L

1Y + FE These locations

may also be

considered as:

1Y — 01
1Y + 81

1Y + 80 :

=) J Y — 80
BOTTOM

Diagram 5.1 The 1Y register pair addressing an area of the memory -

indexed addressing.

78

mnemonic instruction hex.

LD (addr),A 32 addr
LD (addr),HL 22 addr (usual form)
ED 63 addr (unusual form)

LD (addr),BC ED 43 addr

LD (addr),DE ED 53 addr

LD (addr),IX DD 22 addr

LD (addr),lY FD 22 addr

LD (addr),SP ED 73 addr

The above instructions are the only ones to use absolute addressing and it is
important to note that there is not an instruction for loadirig a specified
location with a constant. If this operation is required then the constant has
first to be loaded into the A register, or dealt with in a different manner.

Again, an instruction such as ‘LD (addr),HL’ is in reality a double in-
struction for ‘LD (addr),L’ & ‘LD (addr+1), H'.

The instructions in this subgroup are often used to store addresses and
numbers in memory locations when these values are being considered as
‘variables’. For example it is common practice to write, for example:

‘LD (RAMTOP), HL'
where RAMTOP is the label given to a pair of consecutive memory locations
used to hold the current value of the top of memory.

The fetching of the current value of the variable would later be performed
by using a group 4 instruction, for example:

‘LD HL,(RAMTOP)’

Subgroup b. Instructions using ‘indirect addressing’.

The instructions in this subgroup allow the programmer to copy the
contents of a single register to a location in memory whose address is held in
the HL, BC or DE register pair. There is also an instruction for loading a
single byte constant into the location addressed by the HL register pair.

mnemonic instruction hex.
LD (HL),A 77
LD (BC),A 02
LD (DE),A 12
LD (HL),H 74
LD (HL),L 75
LD (HL),B 70
LD (HL),C 71
LD (HL),D 72
LD (HL),E 73
LD (HL),+dd 36 dd
79

Subgroup c. Instructions using ‘indexed addressing’.
The instructions in this subgroup are:

mnemonic instruction hex.
LD (IX+d),A DD 77d

LD (IX+d) H DD 74d

LD (IX+d),L DD 75d

LD (IX+d),B DD 70d

LD (IX+d),C DD 71d

LD (I1X+d),D DD 72d

LD (IX+d),E DD 73d

LD (1X+d),+dd DD 36ddd

For instructions involving the 1Y register pair change IX to I'Y and DD to FD.
The BASIC programs that demonstrate the instructions from this group
are to be found on page 116.

Group 6. The Addition instructions.
This group of instructions forms the first of four groups in the Z80 instruc-
tion set that involve arithmetical or logical operations.

The Additional instructions allow the programmer to add, in absolute
binary arithmetic, a specified number to the contents of a single register, a
register pair or an indexed addressed location in memory.

The instructions in this group can be divided into three subgroups with
each subgroup having its own memonic type.

The three subgroups are:

a) The ADD instructions.

b) The INC instructions. The special case of addition when ‘1’ is added to an
existing number.

¢) The ADC instructions. The value of the Carry flag is added to the result.
The Carry flag is one of the bits of the FLAG register and is used to signify
if the ‘last’ arithmetic operation led to binary overflow of a register or
location. It will always therefore have the value ‘0°, and be considered
‘reset’, or have the value ‘1’, and be considered ‘set’. ADD & ADC instruc-
tions do in their own turn affect the carry flag but INC instructions do
not, a fact that has distinct advantages on occasions.

Subgroup a. The ADD instructions.
The instructions in this subgroup are:

mnemonic instruction hex. mnemonic instruction hex.
ADD A,+dd C6 dd ADD HLHL 29
ADD A A 87 ADD HL,BC 09
ADD AH 84 ADD HL,DE 19
80

ADD AL 85 ADD HL,SP 39

ADD A,B 80 ADD IX,IX DD 29
ADD A,C 81 ADD IX,BC DD 09
ADD AD 82 ADD IX,DE DD 19
ADD AE 83 ADD IX,SP DD 39

ADD A,(HL) 86
ADD A,(IX+d) DD 86d

For instructions involving the Y register pair change I1X to |Y and DD to FD.

The ADD instructions given above are all very straightforward. However
it must be realised that the register or location providing the ‘addend’ is only
copied and therefore remains unaltered. Also that the addition sets or resets
the carry flag in every case, depending on whether or not there has been
binary overflow to the ‘left’ of the register or register pair involved.

The following examples illustrate these points.

i. With register A holding hex. 60
and register B holding hex. 90
and ‘ADD A,B’ instruction will give:
register A holding hex. FO
register B holding hex. 90
and the carry flag reset.

ii. With register A holding hex. A8
and register B holding hex. 7E
an ‘ADD A,B’ instruction will give:
register A holding hex. 26
register B holding hex. 7E
and the carry flag set.

Subgroup b. The INC instructions.

The instructions in this subgroup allow for ‘1’ to be added to the contents
of an 8-bit register, a location in memory or a 16-bit register pair. In all cases
the carry flag is ignored — that is it remains totally unaffected.

The instructions are:

mnemonic instruction hex. mnemonic instruction hex.
INC A 3C INCHL 23

INCH 24 INC BC 03

INC L 2C INC DE 13

INCB 04 INC SP 33

INCC oC INC IX DD 23

INCD 14 INC 1Y FD 23

81

INCE 1C
INC (HL) 34
INC (1X+d) DD 34d
INC (1Y+d) FD 34d

Subgroup c. The ADC instructions
The instructions in this subgroup are:

mnemonic instruction hex.

mnemonic instruction hex.

ADC A,+dd CE dd ADCHL,HL EDGA
ADCAA 8F ADC HL,BC ED 4A
ADCAH 8C ADC HL,DE ED 5A
ADCA,L 8D ADC HL,SP ED7A
ADCA,B 88

ADCA,C 89

ADCAD 8A

ADCAE 8B

ADC A,(HL) 8E
ADC A,(IX+d) DD 8Ed
ADC A,(lY+d) FDS8Ed
The instructions in this subgroup allow the programmer to add two numbers,
together with the current value of the carry flag. All of the instructions in this
subgroup affect the carry flag. It is reset if the ADC operation does not give
binary overflow and set if it does.

The following examples illustrate these points:

i. With register A holding hex. 60
register B holding hex. 90
and the carry flag set.

an ‘ADC A,B’ instruction will give:
register A holding hex. F1
register B holding hex. 90
and the carry flag reset.

ii. With register A holding hex. A8
register B holding hex. 7E
and the carry flag set.
an ADC A,B’ instruction will give:
register A holding hex. 27
register B holding hex. 7E
and the carry flag set.
The BASIC programs that demonstrate the instructions from this group are
to be found on page 118.

Group 7. The Subtraction instructions.
The Subtraction instructions allow the programmer to subtract, in absolute

82

binary arithmetic, a specified number from the contents of a single register, a
register pair or an indexed addressed location in memory.

Again the instructions in this group can be divided into three subgroups
with each subgroup having its own mnemonic type.

The three subgroups are:

a) The SUB instructions.

b) The DEC instructions. The special case of subtraction when ‘1’ is sub-
tracted from an existing number.

c) The SBC instructions. The value of the carry flag is subtracted from the
result,

All SUB and SBC instructions affect the carry flag depending on whether or
not a binary ‘borrow’ has been required. The DEC instructions leave the carry
flag unaffected.

Subgroup a. The SUB instructions.
The instructions in this subgroup are:

mnemonic instruction hex.
SUB +dd D6 dd
SUB A 97

SUB H 94

SUB L 95

SUB B 90
SUBC 91

SUB D 92

SUB E 93

SUB (HL) 96

SUB (IX+d) DD 96d
SUB (1Y+d) FD 96d

Note: The mnemonics for the SUB instructions are normally written as
above. That is ‘SUB L’ is preferred to ‘SUB A,L’, etc. as all SUB instructions
involve the A register.

In the Z80 the SUB instruction give ‘true’ absolute binary subtraction as
shown in the following examples. The carry flag is reset if the original value in
A is ‘greater than’ or ‘equal to’ the subtrahend (the second number in the sub-
traction) but set if it is ‘less than'.

i. With the A register holding hex. DC
and the B register holding hex. AA
a ‘SUB B’ instruction will give:
the A register holding hex. 32
and the carry flag reset. There is ‘no borrow’.

83

ii. With the A register holding hex. AA
and the B register holding hex. DC
a ‘SUB B’ instruction will give:
the A register holding hex. CE
the B register holding hex. DC
and the carry flag set as there has been ‘borrow’.

Subgroup b. The DEC instructions.

The instructions in this subgroup allow for ‘1’ to be subtracted from the
contents of an 8—bit register, a location in memory or a 16—bit register pair.
In all cases the carry flag is unaffected.

The instructions in this subgroup are:

mnemonic instruction hex. mnemonic instruction hex.
DECA 3D DEC HL 2B

DECH 25 DEC BC 0B

DECL 2D DEC DE 1B

DECB 05 DEC SP 3B

DECC (0]3) DEC IX DD 2B

DECD 15 DEC 1Y FD 2B

DECE 1D

DEC (HL) 35
DEC (I1X+d) DD 35d
DEC (IY+d) FD 35d

Subgroup c. The SBC instructions.
The instructions in this subgroup are:

mnemonic instruction hex. mnemonic instruction hex.
SBC A,+dd DE dd SBC HL,HL ED 62

SBC AA 9F SBC HL,BC ED 42

SBC AH 9C SBC HL,DE ED 52
SBCA,L 9D SBC HL,SP ED 72
SBCA,B 98

SBCA,C 99

SBCAD 9A

SBC AE 9B

SBC A,(HL) 9E
SBCA,(IX+d) DD9Ed
SBCA,(lY+d) FD9Ed

An SBC operation will give a ‘true’ subtraction if the carry flag is reset but
will ‘subtract with borrow’ if the carry flag is set. This can be very useful
when handling multiple precision numbers as any borrow generated can be
taken along the number.

84

e.g. A four byte number held in the registers H, L', H & L can have
another number, held in the registers D', E’, D & E, subtracted from it as
follows:

AND A — resets the carry flag.
SBC HL,DE — subtract the ‘low’ pair.
EXX — switch to alternate set.
SBC HL,DE — subtract the ‘high’ pair.
EXX — switch to main set.

and the appropriate ‘borrow’ is carried from the ‘low’ subtraction to the
‘high’ one.

The BASIC programs that demonstrate the instructions from this group
are to be found on page 120.

Group 8. The Compare instructions.

The instructions in this group are used very frequently in all machine code
programs. They allow the programmer to compare the value held in the A
register against a constant, a value held in a register or an addressed location
in memory.

A compare instruction performs a subtraction operation, without carry,
but discards the answer after using it to set the flags of the F register. The
original value in the A register is unchanged.

The carry flag is affected in the same manner as with a subtraction opera-
tion. A comparison that is ‘greater than’ or ‘equal’ resets the carry flag, and a
‘less than’ sets the carry flag.

The instructions in this group are ‘single comparison’ instructions and
‘block comparison’ instructions are considered on page 102.
The instructions in this group are:

mnemonic instruction hex.
CP +dd FE dd
CPA BF

CPH BC

CPL BD

CPB B8

CPC B9

CPD BA

CPE BB

CP (HL) BE
CP(1X+d) DDBEd
CP (1Y+d) FDBEd

The following examples show the use of ‘CP B’.

85

i. With the A register holding hex. 31
and the B register holding hex. 30
a ‘CP B’ instruction will leave the registers unchanged and make
the carry flag reset.
The result is — ‘31" is greater than ‘30’

ii. Withthe A register holding hex. 30
and the B register holding hex. 30
a ‘CP B’ instruction will leave the registers unchanged and make
the carry flag reset.
The result is — ‘30’ is equal to ‘30'.

iii. With the A register holding hex. 01
and the B register holding hex. 30
a ‘CP B’ instruction will leave the registers unchanged and make
the carry flag set.
The result is — ‘01’ is less than ‘30",

The BASIC program that demonstrates the instructions from this group is
to be found on page 122.

Group 9. The Logical instructions.
In the Z80 instruction set there are instructions to AND, OR & XOR the con-
tents of the A register with the contents of another specified location. The
operations are performed in a ‘bitwise’ manner and the 8-bit result returned
in the A register.

The three types of logical operation will now be discussed in turn.

Subgroup a. The AND instructions.

The logical operation of AND performed with two binary digits will give a
‘set’ bit as a result only if the two binary digits under test are both set. Other-
wise the resultant bit is ‘reset’.

The following example shows how an AND instruction performs eight
separate ‘bit’ operations.

10101010 AA
in AND in AND
binary. 11000000 hex. CO0

will result in results in

10000000 80
The instructions in this subgroup are:

mnemonic instruction hex.
AND +dd E6 dd
AND A A7

86

AND H A4
AND L A5
AND B A0
AND C A1l
AND D A2
AND E A3
AND (HL) A6
AND (IX+d) DD A6d
AND (1Y+d) FD A6d

In use an AND instruction will reset from O to 8 bits of the A register. This
process is called ‘marking-off’ and it allows the programmer to control certain
bits of a byte of data. The following example shows how this is done.
In the SPECTRUM system the bits 2, 1 & 0 of the system variable
ATTR—P hold the ‘permanent’ ink colour. Then, when the ink colour
is changed the ‘old’ colour is removed by using an AND instruction and
the ‘new’ colour entered by using an ADD instruction.
ie. LDA,(ATTR-P) : Fetch system variable.

AND +F1 : Mask-off ‘old’ colour.
ADD +NEW COLOUR : Add ‘new’ colour.
LD (ATTR-P),A : Return system variable.

Subgroup b. The OR instructions.

The logical operation of OR performed with two binary digits will give a
‘set’ bit as a result if either, or both, of the two binary digits under test are
set. Otherwise the resultant bit is ‘reset’.

The following example shows how an OR instruction performs eight
separate ‘bit” operation.

10101010 AA
in OR in OR
binary. 11000000 hex. Co

will result in results in

11101010 EA
The instructions in this subgroup are:

mnemonic instruction hex.
OR +dd F6 dd

ORA B7

ORH B4

OR L B5

ORB BO

ORC B1

ORD B2

ORE B3

87

OR (HL) B6
OR (1X+d) DD B6d
OR (lY+d) FD B6d

In use an OR instruction will set, or rather ensure they stay set, from 0 to 8
bits of the A register.
The following example shows one use of an OR instruction.
In the SPECTRUM system the bits 5, 4 & 3 of the system variable
ATTR—P hold the ‘permanent’ paper colour. It is therefore possible'to
make the paper colour ‘white’ by using an ‘OR +dd’ instruction.
i.e.. LDA{ATTR-P) : Fetch system variable.
OR +38 : Sets bits 5,4 & 3.
LD (ATTR—P),A : Return system variable.

Subgroup c. The XOR instructions.

The logical operation of XOR performed with two binary digits will give a
‘set’ bit as a result if either, but not both, of the two binary digits under test
are set. Otherwise the resultant bit is ‘reset’.

The following example shows how a XOR instruction performs eight separ-
ate ‘bit’ operations.

10101010 AA
in XOR in XOR
binary. 11000000 hex; Co

will result in results in

01101010 6A
The instructions in this subgroup are:

mnemonic instruction hex.
XOR +dd EE dd
XORA AF
XORH AC

XOR L AD
XOR B A8
XORC A9
XORD AA
XORE AB

XOR (HL) AE

XOR (IX+d) DD AE d
XOR(1Y+d) FD AEd

In use a XOR instruction will ‘change’ or ‘flip’ from 0 to 8 bits of the A
register. This is perhaps difficult to understand initially but consider the ex-
ample given above once again. It was:

In hex. AA XOR CO gives 6A

88

In this example the second operand is the byte ‘CO’ which is a byte with only
bits 6 & 7 set. Therefore the effect of the XOR operation is to ‘flip” bits 6 & 7
of the first operand and change ‘AA’ into ‘6A’.

The use of XOR instructions in machine code programs is often compli-
cated but the instruction’XOR A’ is, however, frequently used as an alterna-
tive to ‘LD A,+00’. Both of these instruction lines ‘clear’ the A register but

14
XOR A’ uses only one location wereas ‘LD A,+00" uses two locations.

All AND, OR & XOR instructions reset the carry flag whenever they are
used.

The BASIC program that demonstrates the instructions from this group is
to be found on page 122 .

Group 10. The Jump instructions.
In the Z80 instructions set there are seventeen instructions that allow the
programmer to make ‘jumps’ within a program. A machine code ‘jump’ can
be equated with a BASIC ‘GO TO' but the comparison must not be taken too
far.

The instructions in this group are best considered in eight subgroups. Four
of these subgroups contain instructions that are conditional on the state of
one of major flags and the flags will be discussed in detail as required.

Subgroup a. The absolute jump instruction.
mnemonic instruction hex.
JP addr C3 addr

This is the classic jump instruction. When executed a ‘JP addr’ instruction
leads to the ‘addr’ being loaded into the Program Counter and execution of
the machine code program will continue from that location.

Subgroup b. Jump instructions that use indirect addressing.
The instructions in this subgroup are:

mnemonic instruction hex.
JP (HL) E9

JP (1X) DD E9

JP (1Y) FD E9

These three instructions lead to the 16-bit value currently held in the approp-
riate register pair being loaded into the Program Counter. The instructions in
this subgroup are often used when a jump is to be made to a location whose
address is specified in a table of addresses.

Subgroup c. The relative jump instruction.
mnemonic instruction hex.
JRe 18e

89

This instruction allows the programmer to make jumps to locations that are
within 127 locations forward and 128 locations backwards from the current
location. Note that the current location is in fact the location after the ‘e’ as
the Program Counter is already incremented.

Diagram 5.2 shows how ‘e’ varies for the different jumps that are possible
with this instruction.

‘e’ is always considered in 2's complement arithmetic and a positive ‘e’
gives the number of locations that have to be ‘jumped over’ whilst a negative

‘e’ shows by how much the Program Counter is to be reduced.

Subgroup d. Jump instructions conditional on the carry flag.

In the Z80 instruction set there are four instructions that allow for a
‘jump’ to be made only if the carry flag is as required by the instruction.

The carry flag will now be discussed further.

The Carry Flag.
This flag is bit 0 of the F register and it is essentially a flag that shows whe-
ther or not binary overflow has occurred. However, the manufacturers of the
Z80 have also arranged fot it to be set in certain instances and reset in others.
There are also many instances when the carry flag is unaffected by the execu-
tion of instructions.

In summary the following points can be made:

.All ADD & ADC instructions affect the carry flag. If there is ‘no overflow’
the flag is reset but if there is ‘overflow’ the flag is set.

i. All SUB, SBC & CP instructions affect the carry flag. |f there was a binary
‘borrow’ then the flag is set but otherwise it is reset.

. All AND, OR & XOR instructions reset the carry flag.

iv. The rotation instructions affect the carry flag (see page 99).

The jump instructions that are conditional on the state of the carry flag are:

mnemonic instruction hex. comment

JP NC,addr D2 addr Jump only when
JR NC,e 30e carry flag reset.
JP C,addr DA addr Jump only when
JRC,e 38e carry flag set.

As an example of these instructions consider the following routine that
distinguishes valid ASCII digits.
...................... : Enter with A register
: holding the ASCI| code.

CP +30 : The code for digit ‘0’.
JP C,Error : Jump if out of range.
CP +3A : The code for *:’.

90

‘e’ values Hex.

TOP
jumps J 7F ‘e'valueof 7F isthe
forward 7E maximum forward
T jump.
[}
'
[
'
ot
) ¥ 00
ol i FE
JR f¢——FE
k—— FD
]
|
'
:
1
. 8 ‘e’value of 80 is
juraps —](——— 80 maximum backward
backwards iy
\ J
Al
memory holding machine
code program

Diagram 5.2 To show how different values of ‘e’ cause jumps to
different locations.

91

JR NC,Error : Again jump if out of range.
...................... : Continue with ASCII digits only,
i.e. range 30 — 39. for the digits
‘0'—"9".
Subgroup e. Jump instructions conditional on the zero flag.
Again there are four instructions that allow for a‘jump’ to be made only
if the zero flag is as required by the instruction.
The zero flag will now be discussed.
The Zero Flag
This flag is bit 6 of the F register and in most instances of its usage it be-
comes set if the result of an operation is zero, otherwise it is reset.
For example:
6C ADD 5A gives C6 and zero flag reset.
but 6C ADD 94 gives 00 and zero flag set.

In summary the following points can be made:

i. All ADD, INC, ADC, SUB, DEC, SBC, CP, AND,OR & XOR instructions
using single registers, and ADC & SBC instructions using register pairs will
give the zero flag set if the result is zero.

ii. Rotation instructions (see page 99), Bit testing instructions(see page 102)
and Block Searching instructions (see page 102) affect the zero flag.

iii. LD instructions, with the exception of ‘LD A,lI’ & ‘LD A,R’, do not affect
the zero flag.

The jump instructions that are conditional on the state of the zero flag are:

mnemonic instruction hex. comment

JP NZ,addr C2 addr Jump only when
JR NZ,e 20e zero flag reset.
JP Z,addr CA addr Jump only when
JR Ze 28e } zero flag set.

The instructions of this subgroup are very commonly used and the following
example shows ASCI| characters being separated.
....................... : Enter with the A register holding
a character code.

CP +3B : Is the character a *;?

JR Z,S—colon : Jump if it is so.

CP +2C tlsita’,’?

JR NZ,Else : Jump with everything else.

...................... : Continue with the ‘,” handling
instructions.

92

Subgroup f. Jump instructions conditional on the sign flag.

These are two instructions that allow for a ‘jump’ to be made only if the
sign flag is as required by the instruction.

The sign flag will now be discussed.

The Sign Flag
This flag is bit 7 of the F register and in most instances of its usage it is a
copy of the lefthandmost bit of a ‘result’.

Whenever a 8—bit, or 16—bit, binary number is considered in 2's comple-
ment arithmetic then the lefthandmost bit (bit 7 or bit 15) is taken as a sign
bit. It is ‘reset’ for positive numbers and ‘set’ for negative ones.

Therefore the sign flag can be taken as being ‘reset’ with positive results
and ‘set” with negative ones.

In summary the following points can be made:

i. All ADD, INC, ADC, SUB, DEC, SBC, CP, AND, OR & XOR instructions
using single registers, and ADC & SBC instructions using register pairs will
affect the sign flag as indicated above.

ii. Block searching instructions (see page 102) and most Rotation instructions
(see page 99) also affect the sign flag.

iii. LD instructions, with the exception of ‘LD A,lI’ & ‘LD A,R’, do not affect
the sign flag.

The jump instructions that are conditional on the state of the sign flag are:

mnemonic instruction hex. comment

JP P,addr F2 addr Jump if result
positive.

JP M,addr FA addr Jump if result
negative.

The instructions in this subgroup are not commonly used partly because they
require an absolute address and partly because a sign bit can be read in several
other ways.
The following example demonstrates how an instruction from this sub-
group might be used.
...................... : Enter with the A register holding
a character code.

AND A : This will affect the sign flag.

JP P,Else : Codes 00 — 7F are dealt with
separately.

...................... : Continue with graphic characters
only.

Subgroup g. Jump instructions conditional on the overflow/parity flag.
Again there are two instructions that.allow for a ‘jump’ to be made only if
the overflow/parity flag is as required by the instruction.

93

The overflow/parity flag will now be discussed.

The Overflow/Parity flag
This flag is bit 2 of the F register and is a dual purpose flag. Certain instruc-
tions use the flag to indicate ‘overflow’ whilst other instructions use it to
store the result of a ‘parity’ test.
The concept of ‘overflow’ does not apply to binary overflow but rather to
2's complement arithmetic overflow as illustrated in the following example.
Consider: in hex. 0A ADD 5C gives 66
in dec. 10 ADD 92 gives 102
which is correct — no overflow.

in hex. 6A ADD 32 gives 9C
in dec. 106 ADD 50 gives —100
which is incorrect — i.e. overflow.

Overflow can also occur with subtractions, viz:
in hex. 83 SUB 14 gives 6F
in dec. —125 SUB 20 gives 111
which is incorrect — i.e. overflow.

The overlow/parity flag is ‘set” when overflow occurs.

The concept of ‘parity’ concerns the number of set bits in a given byte.
Parity is said to exist when the number of set bits is even.

The following example shows this.

The byte 01010101 haseven parity and the flag is set.

but the byte 0000000 1 has odd parity and the flag is reset.

In summary the following points can be made:

i. All ADD, ADC, SBC, SBC & CP instructions using single registers, and
ADC & SBC instructions using register pairs have their results tested for
overflow.

ii. All AND, OR, XOR & most Rotation instructions (see page 99) have their
results tested for parity.

iii. An INC instruction will set the flag if the result is hex. 80, and a DEC
instruction if the result is hex. 7F.

iv. Various other instructions, viz. ‘LD A,l’, ‘LD A,R’ and many of the block
handling instructions (see page 102), also affect the overflow/parity flag.

The jump instructions that are conditional on the state of the overflow/
parity flag are:
mnemonic instruction hex.
JP PO,addr E2 addr

comment
Jump if parity odd,
or no overflow.

94

JP PE,addr EA addr Jump if parity

even, or overflow.

The instructions in this subgroup are only used on rare occasions and even
then their use can be avoided by using other instructions.

The BASIC programs that demonstrate the instructions from this group
are to be found on page 124.

Group 11. The ‘DJNZ e ' instruction.
The single instruction in this group is one of the most useful and most com-
monly used instructions in the whole of the Z80 instruction set.
The instruction is:
mnemonic instruction hex.

DJNZ,e 10e
The mnemonic stands for ‘decrement the B register and jump relative if the

zero flag is reset’.

In use this instruction can be likened to a BASIC FOR-NEXT loop of the

form:

FORB=xTO@STEP —1: NEXTB
In this loop the variable B is initialised to a value x. Then with each passage
of the loop B is decremented until it reaches zero.

The instruction ‘DJNZ,e’ is used in a similar manner. Firstly, the program-
mer has to specify the size of the loop variable and enter it into the B register.
Then the substance of the loop is given. Finally the ‘DJNZ,e’ instruction is
used with care being taken to make sure the value of ‘e’ is appropriate.

The following example shows this instruction as it might be used to print
the alphabet.

LD B,+1A : 26 letters in the

Loop LD A,+5B : alphabet. ‘A’ is first;
sSuB B :i.e. hex. 56B—1A = 41.
RST 0010 : print the character, (see later)
DJNZ,LOOP : Move on to ‘B’, ‘C’ etc.
...................... : In effect NEXT B.

The hex. code for this example is:
06,1A,3E,5B,90,D7,10,FA

where the byte ‘3E’ has been given the label ‘loop’. The author finds that the
best way to calculate the correct value for ‘e’ in a short machine code
example, such as the above, is to give the ‘e’ byte the value ‘FF’ and then
count backwards in hex. until the ‘loop’ byte is reached. In the above ex-
ample there are five steps backwards and the appropriate value for ‘e’ is
hex. FA.

The BASIC program that demonstrates the instruction in this group is to
be found on page 126.

95

Group 12. The Stack instructions.

In most machine code programs extensive use is made of the machine stack
both by the programmer as a place to save data, and the microprocessor to
save ‘return’ addresses. The instructions that form this group can be divided
into two user-subgroups and three microprocessor-subgroups.

Subgroup a. The PUSH and POP instructions.

These instructions allow the programmer to PUSH, i.e. save, two bytes of
data on the machine stack and later POP, i.e. copy, two bytes from the mach-
ine stack.

The pairs of data bytes must be copied from, and to, specified register
pairs but it is important to realise that no record is kept that shows which
data bytes ‘belong’ to which register pairs.

The instructions in this subgroup are:

mnemonic instruction hex. mnemonic instruction hex.
PUSH AF F5 POP AF F1

PUSH HL E5 POP HL E1

PUSH BC C5 POP BC C1

PUSH DE D5 POP DE D1

PUSH IX DD E5 POP IX DD E1

PUSH 1Y FD Eb POP IY FD E1

It is important to understand the operation of these instructions if a machine
code program is going to make use of the machine stack in other than a
straightforward manner.

When a PUSH instruction is executed the Stack Pointer is first decremented
so as to make it point to a free location. A copy of the high register of the
register pair is then copied into this location. Then the Stack Pointer is
decremented a second time and the value in the low register of the register
pair is eopied over.

The opposite actions are followed during the execution of a POP instruc-
tion. It is important to appreciate that the Stack Pointer will after the execu-
tion of one of these instructions always point to the ‘last-used’ location on
the stack.

The instructions in this subgroup are often used in ‘pairs’ and the follow-
ing example shows this.

PUSH AF : Save copy of AF.
PUSH BC : Save copy of BC.
...................... : Perform ‘other work’.
POP BC : Retrieve the ‘old’ BC.
POP AF : Retrieve the ‘old’ AF.

In the example the ‘other work’ can make use of the A, F, B & C registers

96

with impunity but it must leave the Stack Pointer with its former value if the
whole routine is to run as desired.

Subgroup b. The Stack Exchanging instructions.

The instructions in this subgroup are not commonly used but they can on
occasions be of great use.

The instructions are:

mnemonic instruction hex.
EX (SP),HL E3

EX (SP), 1Y DD E3

EX (SP),IX FD E3

These instructions allow the programmer to exchange the current value held
in a specified register pair with the last entry on the machine stack. The Stack
Pointer is unaffected.

The use of these instructions can be confusing and they are best consid-
ered as being alternative instructions to the PUSH & POP instructions in
special cases. :

Consider, for example, the following situation.

A value ‘First’ is on the machine stack and a value ‘Second’ is in the HL
register pair.

It is then the wish of the programmer to exchange these values with
each other.

There are two ways:

i Use a 'EX (SP),HL' instruction.

ii. Use another register pair as a temporary store for ‘First’.

i.e. POPBC : Save ‘First’ in BC.
PUSH HL : ‘Second’ to stack.
PUSH BC : Move ‘First’ to HL
POP HL : in one way or another.

The instructions in this subgroup can also be used to manipulate ‘return’
addresses (see below).

Subgroup c. The CALL instructions.

The machine code CALL instructions are directly equivalent to the BASIC
‘GO SUB’ command. The instructions are included in this group as the micro-
processor uses the machine stack as the area in which the ‘return’ addresses
are saved.

There are nine instructions in this subgroup and they allow for a sub-
routine to be ‘called’ unconditionally or conditionally on the state of the four
major flags.

The instructions in this subgroup are:

97

mnemonic instruction hex. comment

CALL addr CD addr Unconditional.
CALL C,addr DC addr Carry flag set.
CALL NC,addr D4 addr Carry flag reset.
CALL Z,addr CC addr Zero flag set.
CALL NZ,addr C4 addr Zero flag reset.
CALL M,addr FC addr Sign flag set.
CALL P,addr F4 addr Sign flag reset.
CALL PE,addr EC addr Overflow/parity
flag set.
CALL PO,addr E4 addr Overflow/parity
flag reset.

The actions of a CALL instruction are as follows:

i. The current value of the Program Counter, i.e. the address of the first
location after the ‘addr’ of the CALL instruction, is saved on the machine
stack. The Stack Pointer is manipulated as for a PUSH instruction. The
high byte of the Program Counter going to the location above the low
byte.

ii. The ‘addr’ is then copied into the Program Counter and the execution of
the program procedes.

Subgroup d. The RET instructions.

The machine code RET instructions are directly equivalent to the BASIC
‘RETURN’ command. There are nine instructions in this subgroup and they
allow for an exit from a subroutine either unconditionally or conditionally on
the state of the four major flags.

The instructions in this subgroup are:

mnemonic instruction hex. comment
RET C9 Unconditional.
RETC D8 Carry flag set.
RET NC DO Carry flag reset.
RET Z C8 Zero flag set.
RET NZ Co Zero flag reset.
RETM F8 Sign flag set.
RETP FO Sign flag reset.
RET PE E8 Overflow/parity
flag set.
RET PO EO Overflow/parity
flag reset.

The action of a RET instruction is to copy the last entry on the machine
stack to the Program Counter. The Stack Pointer is thereby incremented
twice.

98

It is important to appreciate that the address taken off the machine stack
does not necessarily have to have been placed there originally by a CALL
instruction.

It is not at all common in BASIC programming to directly manipulate the
‘GO SUB stack’ but in machine code programming it is a fairly common
occurrence.

The following example shows this being done. An address of a routine is
to be collected from a table of addresses and a ‘jump’ made to that routine.

...................... : Start with the A register holding
the entry number.

LD D,+00 : Clear the D register.

ADD A : Double the entry number
LD EA : and transfer to E.

LD HL,+Table—base : Point HL to the table.
ADD HL,DE : Point to the entry.

LD D,(HL) : Pick up the high part of the
INC HL : routine address and then
LD E,(HL) : the low byte.

PUSH DE : Save it on the machine stack.
...................... : Other work may use DE.
RET : Will ‘jump’ appropriately.

Subgroup e. The RST instructions.

The last subgroup of instructions in this group contains the special RST, or
‘restart’, instructions. These instructions are in effect CALL instructions
that do not require as ‘addr’ to be specified.

The instructions in this subgroup are:

mnemonic instruction hex. comment

RST 0000 Cc7 CALL 0000
RST 0008 CF CALL 0008
RST 0010 D7 CALL 0010
‘RST 0018 DF CALL 0018
RST 0020 E7 CALL 0020
RST 0028 EF CALL 0028
RST 0030 F7 CALL 0030
RST 0038 FF CALL 0038

In the SPECTRUM system the eight ‘restart’ addresses are monitor sub-
routine entry points and they will be discussed in chapter 7.

The BASIC programs that demonstrate the instructions in this group are
to be found on page 127,

Group 13 The Rotation instructions.
In the Z80 instruction set there is a large number of instructions for rotating

99

the bits of a specified byte. These instructions are often very useful. All the

more so as they all pass bits to the carry flag which can then be tested.
Shifting a byte to the left has the effect of doubling the value of that byte

as long as the most significant bits are not lost. Whilst shifting a byte to the

right halves the value.
Diagram 5.3 shows the variety of rotations (& shifts) that are possible.
The following table shows the instructions in this group.

RLC RL SLA RRC RR SRA |SRL
A CB 07 | CB 17 | CB 27 | CB OF|CB 1F|CB 2F|CB 3F
H CB 04 | CB 14 | CB 24 | CB 0C|CB 1C{CB 2C|CB 3C
L CB 05 | CB 15 | CB 25 | CB OD|CB 1D{CB 2D|CB 3D
B CB 00 |CB 10| CB 20 { CB 08|CB 18 ,CB 28 |CB 38
C CB 01| CB 11 |CB 21 |CB 09|CB 19|CB 29|CB 39
D CB 02 | CB 12 | CB 22 | CB OA|CB 1A|CB 2A|CB 3A
E CB 03 | CB 13 | CB 23 | CB 0OB|CB 1B|{CB 2B|CB 3B
(HL) [CB 06 | CB 16 | CB 26 | CB OE|CB 1E|{CB 2E|CB 3E
(IX+d)| bD CB | DD CB | DD CB | DD CB| DD CB{DD CB|DD CB

d 06 d 16 d 26 d OE| d 1E| d 2E; d 3E
(Iy+d); FD CB | FD CB| FD CB | FD CB|FD CB|FD CB|FD CB

d 06 d 16 d 26 d OE| d 1E| d 2E| d 3E

There are also four single byte instructions for rotating the A register and two

‘nibble’ handling instructions.

mnemonic
RLCA
RLA
RRCA
RRA
RRD
RLD

As a summary of the effect of the instructions from this group upon the
major flags the following points can be made:

instruction hex.
07

17

OF

1F

ED 67

ED 6F

i. All the instructions, except for ‘RLD’ & ‘RRD’ affect the carry flag. (See
diagram 5.3.)

ii. Al the instructions, with the exception of the four single byte instructions,
affect the zero, sign and overflow/parity flags.

100

RLC & RLCA
Rotate left
with carry.

RL&RLA
Rotate left.

SLA
Shift left.

RRC & RRCA
Rotate right
with Carry.

RR & RRA
Rotate right.

.-(‘l7e-6<—5<-4(—3<—2<-1<—0|§

LoH

7¢6cb«4<3«2«1¢0k0

r-

e S R

Lo{7+65+423+2 510} ¢l

4= —---mmy

La{h 6—»5-)4—»3—»2»1—»0}

Bit7 goes to carry.

Bit7 goes to bito.

Bit7 goes to carry.

Carry goes to bitg.

Buto is reset.

Bit7 goes to carry.

Bito goes to carry.
Bito goes to bit7.

Bito goes to carry.

Carry goes to bity.

SRA Bitg goes to carry.
Shift right. IR 5 - A0R 255950 Bity is unchanged.
SRL
Logical shift Blto goes to carry.
right. [9} 7—}6-)5—)4—*3—)2—)1—)0}—)[] Bity is reset.
RLD N\ Two special
Aregister. _ __ __ -mzmo- LHl_L ‘nibble’
== = handling
‘ 3 21 7 6 5 4 ' 3 2 10
] Lol 0 & J f ______ J instructions.
RRD = agmem——m— = e -,
| 7 6 54,3 21 (ﬂ]7 6 5 4 ' 3 2 1 (H
AW W e e
N s e _‘

Diagram 5.3 The different types of ‘rotation’

101

The BASIC program that demonstrates the instructions from this group is to
be found on page 129,

Group 14. The ‘Bit handling’ instructions.

In the Z80 instruction set there are instructions that allow the programmer to
test, set or reset a specified bit within a byte held in a register or addressed
location. The three types of instructions will be discussed in turn.

Subgroup a. The BIT instructions.

The BIT instructions allow the programmer to determine the status of a
specified bit. Following the use of one of these instructions it is usual to act
upon the finding, for example, by using a ‘JP Z’ instruction.

A BIT instruction will give the zero flag set if the bit under test is reset,
and vice versa.

Subgroup b. The SET instructions.

The SET instructions allow the programmer to set a specified bit. No flags
are affected.

In use the instructions are used to set bits as required but on many occa-
sions their use is better described as ‘ensuring’ a particular bit is set. A SET
instruction acting on a bit that is already set will have no demonstrable effect.

Subgroup c. The RES instructions.

The RES instructions allow the programmer to reset a specified bit. Once
again no flags are affected.

The instructions of these three subgroups are all given in the following
table. (see page 103)

Note: For instructions using the indexing registers see appendix i.
The BASIC program that demonstrates the instructions in this group is to be
found on page 131

Group 15. The Block Handling instructions.

There are eight block handling instructions in the Z80 instruction set. These
instructions are very interesting and useful. They allow the programmer to
move a block of date from one area of the memory to another, or to search
an area of memory.

In order to move a block of data the base address must be present in the
HL register pair, the destination address in the DE register pair and the num-
ber of bytes in the block in the BC register pair.

In order to search an area of memory for the first occurrence of a particu-
lar value the base address must once again be in the HL register pair, the num-
ber of bytes in the search area in the BC register pair and the A register must
hold a copy of the ‘particular’ value.

102

bit bit bit bit bit bit bit bit
0 1 2 3 4 5 6 7
A BIT 47 4F 57 5F 67 6F 77 7F
register | RES 87 8F 97 9F A7 AF B7 BF
CcB ** SET c7 CF D7 DF E7 EF F7 FF
H BIT 44 4C 54 5C 64 6C 74 7C
register | RES 84 8C 94 9C A4 AC B4 BC
CB ** SET C4 cC D4 DC E4 EC F4 FC
L BIT 45 4D 55 5D 65 6D 75 7D
register | RES 85 8D 95 9D Ab AD B5 BD
cB ** SET C5 CD D5 DD Eb ED F5 FD
B BIT 40 48 50 58 60 68 70 78
register | RES 80 88 90 98 A0 A8 BO B8
cB ** SET co Cc8 DO D8 EO E8 FO F8
Cc BIT 41 49 51 59 61 69 71 79
register | RES 81 89 91 99 A1 A9 B1 B9
cB ** SET C1 C9 D1 D9 E1 E9 F1 F9
D BIT 42 4A 52 BA 62 6A 72 7A
register | RES 82 8A 92 9A A2 AA B2 BA
cB ** SET C2 CA D2 DA E2 EA F2 FA
E BIT 43 4B 53 5B 63 6B 73 7B
register | RES 83 8B 93 9B A3 AB B3 BB
cB ** SET C3 CB D3 DB E3 EB F3 FB
(HL) BIT 46 4E 56 5E 66 6E 76 7E
cB ** RES 86 8E 96 9E A6 AE B6 BE
, SET C6 CE D6 DE E6 EE F6 FE
The instructions in this group are:
AUTOMATIC
mnemonic instruction hex. comment
LDIR ED BO Block moving — incrementing
LDDR ED B8 Block moving

103

— decrementing

CPIR ED B1
CPDR ED B9

Block searching — incrementing
Block searching — decrementing

NON-AUTOMATIC

mnemonic instruction hex. comment

LDI ED AO Byte moving — incrementing
LDD ED A8 Byte moving — decrementing
CPI ED A1 Byte compare — incrementing
CPD ED A9 Byte compare — decrementing

As can be seen in the above table there are both automatic and non-
automatic instructions. The automatic instructions are generally the more
common and the more useful.

An automatic instruction, upon execution, will complete its task without
any further instruction from the programmer. i.e. When a ‘LDIR’ instruction
is executed by the microprocessor then that instruction will result in a block
of data being moved. It therefore follows that the execution of an automatic
instruction can take a variable length of time. This time being dependent on
the number of bytes to be moved.

A non-automatic instruction however handles only one byte at a time and
requires the programmer to use the instruction repeatedly if a block of data
is to be moved or searched. The instruction time of a non-automatic instruc-
tion is therefore fixed. A non-automatic instruction is a ‘block handling’
instruction as upon execution the ‘source’, ‘destination” and ‘counter’ values
are incremented, or decremented, by the microprocessor.

Each of the instructions in this group will now be discussed in turn.

LDIR:
This is the most commonly used instruction of the eight instructions in this
group.

A ‘LDIR’ instruction will move a block of data whose ‘source’ address is
held in the HL register pair to the area of memory with the ‘destination’
address held in the DE register pair with the number of bytes specified by
the BC register pair.

In operation a single byte is moved from (HL) — read this as ‘where HL
points’ — to (DE). The value in the BC register pair is then decremented and
the values in the HL & DE register pairs incremented. If the ‘count’ in the BC
register has not yet reached zero then another byte of data will be moved.
The moving of bytes continues until the ‘counter’ reaches zero but note that
at that moment the register pairs HL & DE point to the locations after the
blocks.

The overflow/parity flag is reset by this instruction.

104

LDDR:

This instruction is the same as the ‘LDIR’ instruction except that after each
byte is moved the values in the HL & DE register pairs are decremented. The
instruction therefore requires that the ‘base address’ of a block refers to the
last location of the block. (The address is still referred to as the ‘base address’.)
The ‘destination’ address also has to refer to the last location of the destina-
tion area.

CPIR:

This instruction searches a specified area of memory for the first occurrence
of a ‘particular’ value. The HL register pair must hold the ‘base address’, the
BC register pair the number of the bytes to be examined and the A register
the ‘particular’ value.

In operation the byte from (HL) is compared to that held in the A register.
If there is no match then the instruction decrements the counter and incre-
ments the address in the HL register pair and proceeds with the next compari-
son,

The operation continues until either a match is found or the value held in
the BC register pair reaches zero. If a match is found then the zero flag is set,
the sign flag is reset and the HL register pair points to the location after the
matching byte. The value in the BC register pair will indicate, also, how far
through the block the match was found.

If no match is found then the BC register pair will hold zero and the sign,
zero and overflow/parity flags are all reset.

CPDR:
The operation of this instruction is similar to the ‘CPIR’ instruction but the
block of data is searched from the top downwards.

Now the non-automatic instructions will be discussed.

LDI:
The execution of this instruction will result in the single byte of data at (HL)
being moved to (DE). The value in the BC register pair is decremented. The
overflow/parity flag will be set unless the value in the BC register pair has
become zero. The values in the HL & DE register pairs are incremented.

It is then for the programmer to decide whether or not to move another
byte of data. In normal use the programmer would probably make a test on
the byte that is to be moved next and then act accordingly.

LDD:
This instruction is similar to ‘LDI’ except that the values in the HL & DE
register pairs are decremented by the instruction.

CPI:
The execution of this instruction will lead to the byte addressed by the HL
AN

105

register pair being copied into the microprocessor and saved there whilst the
value in the HL register pair is incremented and the value in the BC register
pair decremented. The ‘saved’ value is then compared to the value held in the
A register. The zero flag is set if there is a match but otherwise reset. The sign
flag is reset and the overflow/parity flag is reset unless the value in the BC
register pair has reached zero in which case it is set.

CPD:
This instruction is similar to ‘CPl’ except that the value in the HL register
pair is decremented.

The BASIC programs that demonstrate the instructions from this group
are to be found on page 133.

Group 16. The Input and Output instructions

In the Z80 instruction set there is a most comprehensive set of instructions
that allow the programmer to collect data from an outside source (IN) or to
send data to a peripheral device (OUT).

There are simple, non-automatic and automatic instructions in this group
although only the simple instructions are used in the standard SPECTRUM
system.

In all cases the data that is handled by an IN or an OUT is in the form of
an 8—bit parallel byte of data.

When executing an IN instruction the microprocessor takes the ‘byte of
data’ off the data bus and copies it into a specified register. The control line
[ORQ is active as well as RD during the execution of an IN instruction.

When executing an OUT instruction the microprocessor places a copy of
the value held in a specified register onto the data bus from where it may be
collected by a peripheral device. The lines IORQ & WR will both be active
during the execution of an OUT instruction.

In addition to the state of the R_IS, WR & IORQ lines a peripheral device
will be activated by the use of an appropriate address placed on the address
bus during the execution of either an IN or an OUT instruction as required.
This address is termed a ‘port address’ and in a Z80 system it a 16—bit add-
ress.

In a small microcomputer system such as the SPECTRUM it is common
practice to only use only a few of the 65,636 possible port addresses by
allowing the peripheral device to be identified by the state of a particular
address line. i.e. The ZX printer is selected by the line A2 being active.

The instructions in this group are:

1/0 High Low
mnemonic instruction hex. register P.A. P.A.
IN A, (+dd) DB dd A A dd
IN A,C) ED 78 A B C

106

IN H,(C)
IN L(C)
IN B,(C)
IN C,(C)
IN D,(C)
IN E,(C)
OUT (+dd),A
OUT (C)A
OuUT (C),H
OuT (C),L
OuT (C),B
OouT (C).C
OouT (C),D
OuUT (C),E

ED 60
ED 68
ED 40
ED 48
ED 50
ED 58
D3 dd
ED79
ED 61
ED 69
ED 41
ED 49
ED b1
ED 59

MOOWrIP>»P>mMUOUO®EETI

The non-automatic and automatic instructions are:

O WWWwWwWWDP»PmWWWE®
OOOOOOO&OOOOOO

mnemonic instruction hex. comment

INI ED A2 Non-automatic. Incrementing.
INIR ED B2 Automatic. Incrementing.
IND ED AA Non-automatic. Decrementing.
INDR ED BA Automatic. Decrementing.
OUTI ED A3 Non-automatic. Incrementing.
OUTIR ED B3 Automatic. Incrementing.
ouUTD ED AB Non-automatic. Decrementing.
OUTDR ED BB Automatic. Decrementing.

Group 17. The Interrupt instructions.
There are seven instructions in the Z80 instruction set that allow the pro-
grammer to manipulate the interrupt system of the Z80 microprocessor.

The instructions in this group are:

mnemonic instruction hex.
E1 FB

D1 F3

IMO ED 46

M1 ED 56

IM 2 ED 5E

RETI ED 4D

RETN ED 45

Each of these instructions will now be discussed in turn.

E1:
When power is first applied to the Z80 the maskable interrupt system is un-
able to interrupt the Z80. This situation will exist until the system is ‘enabled’

107

by the programmer including an ‘El’ instruction in the program being fol-
lowed by the microprocessor.

In the SPECTRUM system the maskable interrupt system is used for the
real-time clock and keyboard scanning and the interrupts are generated by a
50 c.p.s. clock pulse.

DI:

At any point in a machine code program the programmer may decide to turn
off (disable) the maskable interrupt system by the use of a ‘DI’ instruction
which renders the microprocessor insensitive to the signals on the INT line. In
the SPECTRUM system the maskable interrupt is disabled for the duration of
the load, SAVE, VERIFY & MERGE operations so as to give a ‘un-interrupted’
period.

IM O:

There are three interrupt modes. Interrupt mode O is selected automatically
by the microprocessor when power is first applied, or by the execution of a
‘IM 0’ instruction. Interrupt mode O allows for peripheral devices to ‘tell’
the microprocessor which ‘restart’ routine is to be followed upon receipt of a
maskable interrupt on the INT line. This mode is not used in the SPECTRUM
system.

IM 1:

Interrupt mode 1 is selected by the execution of an ‘IM 1’ instruction and it
is the mode used in the SPECTRUM system. The programmer of the 16K
monitor program ‘has included this instruction as part of the initialisation
routine.

In this mode ‘restart 0038 will always be selected upon receipt of a signal
on the INT line, that is as long as the maskable interrupt system has been
enabled. In the SPECTRUM system the machine code routine at 0038 up-
dates the real-time clock and scans the keyboard.

IM 2:

Interrupt mode 2 is not used in the SPECTRUM system but it is the most
powerful of the three interrupt modes. In this mode a peripheral device can
indicate to the microprocessor which of 128 different subroutines is to be
followed upon receipt of a maskable interrupt. The contents of the | register
and a byte supplied by the peripheral device are used together to form a
16—bit address which is then used to address a ‘vector table’ which must
previously have been prepared in memory.

RETI:

This is a special ‘return’ instruction for use with a maskable interrupt routine.
The effect of the instruction is to return with the same maskable interrupt
state as occurred before the maskable interrupt.

108

RETN:
This ‘return’ instruction is similar to ‘RETI’ but it is applicable at the end of a
non-maskable interrupt routine.

Group 18. Miscellaneous instructions.
There are six further instructions to be mentioned. They are:

mnemonic instruction hex. mnemonic instruction hex.
CPL 2F CCF 3F

NEG ED 44 HALT 76

SCF 37 DAA 27

Each of these instructions will now be discussed in turn.

CPL:

This is a simple instruction that complements the A register. It therefore sets

any bit that is reset and vice versa. This operation is called 1's complementing.

No major flags are affected.

NEG:

This instruction 2's complements the contents of the A register. By so doing

itis similar to the two operations of 1's complementation and incrementation.
A ‘NEG’ instruction does affect the major flags. The sign and zero flags

depend on the ‘result’. The carry flag will be reset is the original value was

zero otherwise it is reset and the overflow/parity flag is set if the original

value was hex. 80 otherwise it is reset.
SCF:

This instruction sets the carry flag.
CCF:

This instruction complements the carry flag.

HALT:

This is a special instruction that makes the microprocessor stop executing
instructions until an interrupt occurs. In the SPECTRUM system the only
interrupts that occur are the maskable interrupts. Hence, as long as the inter-
upts are enabled, a ‘"HALT’ operation will be terminated by the next mask-
able interrupt signal. The PAUSE command uses this fact to count 1/50 ths.
of a second.

DAA:
This is the ‘decimally adjust the A register’ instruction. In ‘binary coded

arithmetic’ (BCD) the decimal numbers 0-9 are represented by the binary
nibbles 0000-1001 and the nibbles 1010-1111 are not used. Therefore:

The byte 0000 0000 represents the number 0.

The byte 0011 1001 represents the number 39, etc.
This instruction converts bytes in absolute binary form to the BCD form.

The sign flag and the zero flag are affected by the ‘result’ and the overflow/
parity flag is set by even parity. The effect on the carry flag depends on whe-
ther there is BCD overflow, in addition operation, or BCD borrow in sub-
traction operations.

109

6. UNDERSTANDING — Demonstration Machine Code Programs

6.1 Introduction
The principal aim of this chapter is to get the reader over the initial problems
associated with writing machine code programs.

The instructions of the Z80 instruction set have all been listed in chapter
5 but no mention was made as to how machine code programs can be run on
the SPECTRUM system. This present chapter contains a series of demonstra-
tion programs that show, in a simple manner, how the instructions can be
used.

In chapter 8 there will be further advice about how machine code routines
can be written to take full advantage of the SPECTRUMS's colour and high
resolution display.

There are now three points to be discussed:

a) Choose an area of RAM.

A user-written machine code program must have allocated to it the required
number of memory locations. In the SPECTRUM system there are several
areas of the memory that may be used but the demonstration programs in
this chapter will be allocated a part of the ‘spare’ RAM — location 32,000 and
onwards. A machine code program in this area can be SAVEd and LOADed
to and from tape as a block of data, if required.

b) Enter the bytes of the machine code.

There is no provision in the SPECTRUM system for the entering of machine
code other than to use the command POKE. However, the operand of this
command may be expressed as a decimal number, a binary number or an
expression,

The following lines are therefore all valid:

10 POKE 32000,201
or, 10 POKE 32000,BIN 110061001
or, 10 LET A=201: POKE 32000,A
and each may prove to be useful on certain occasions.

The recommended method, however, is to describe the machine code
instructions in their appropriate hexadecimal characters. The following
Hex loader routine will be used throughout this chapter.

10 LET D=32000: REM Hex loader

20 DEF FN A(A$,B)=CODE A%(B)—4
8-7*(CODE A%$(B) > 57)

30 DEF FN C(A8)=16"FN A(A3,1)+
FN A(A3,2)

40 READ A$: IF A <> “**" THEN P
OKE D,FN C(A$): LET D=D+1: GO TO 40

110

The above Hex loader will read a DATA list in which each pair of hexadeci-
mal characters is enclosed by quotes and separated from other pairs by com-
mas. The pair of characters — ** — is used as a terminator.
For example:
5@ DATA ‘@@, “@1", 92", ***
RUN

would lead to location 32,000 holding ‘@’, location 32,001 holding ‘1’ and
location 32,002 holding ‘2'.

c) Execute the user-written machine code.
The BASIC command ‘USR number’ aliows for execution of the SPEC-
TRUM'’s monitor program to be stopped and user-written machine code to be
followed instead. It is important to ensure that the operand of USR is set to
the required location, that the user-written program does end with a ‘return’
instruction if it is indeed the user’s wish to ‘return to BASIC’ and that the
value returned by the USR command is handled appropriately.

The commonly used forms of USR are:
PRINT USR n — which prints the decimal value of the contents of

the BC register pair.

RANDOMIZE USR n — which affects the random number generator.
LET A=USR n — which uses a further variable.
each of these forms is useful on occasions.

The programs that follow will be described in assembly format and a DATA
list produced for use with the Hex loader given above.

The instructions are arranged in the same order as given in chapter 5.

6.2 The programs

Group 1. The NO OPERATION instruction. (see also page 72)
This instruction is very simple to use and a machine code program containing
one or more NO OPERATION lines followed by a ‘return’ instruction does .
constitute a complete machine code program.

The following assembly Iiéting shows an elementary machine code program
using a single NO OPERATION instruction.
address machine code mnemonic comment
7D00 00 NOP A single NO OPERATION.
7D01 Cc9 RET The ‘return to BASIC".

The following BASIC program shows this assembly listing being changed into
the required form for the SPECTRUM.

Program 1. ‘NOP’
Lines 10 — 40. The Hex loader as given above,

1M1

50 DATA ““00",“C9",“**"
60 LET A=USR 32000
70 PRINT “The NOP machine code
program has been executed succes
sfully”’
The reader is advised to get a good understanding of Program 1 before pro-
ceeding further.

Group 2. The instructions for loading registers with constants.
(see also page 72)
The ‘USR number’ command returns the value of the BC register pair as an
absolute 16-bit number and the ‘PRINT’ command will display this nhumber
as a decimal number in the range 0—65,535.

In the following assembly listing the B and C registers are loaded with
constants using instructions from this group and the BASIC program 2 uses
this machine code routine.

address machine code mnemonic comment

7D00 06 00 LD B,+oo0 Make the B register zero

7D02 OE 00 LD C,+xx The user will enter
different values.

7D04 Cc9 RET ‘Return to BASIC'.

In program 2 the instructions ‘LD B,+dd’ & ‘LD C,+dd’ are both used and
the user is invited to enter different values as the operand of the latter in-
struction.

Program 2. ‘LD B,+dd’' & ‘LD C,+dd’.
Lines 10 — 40. The Hex loader as given above.
50 DATA “@6","00",“0E", 00"
51 DATA “C9Q" “**"
60 INPUT ““Enter a value for th
e C register (—255 only)”,N
78 CLS
80 POKE 32003,N
90 PRINT AT 10,8;”The C regist
er now holds’’;CHR$ 32;USR 32000
100 GO TO 60

The next program illustrates the ‘LD BC,+dddd’ instruction. So first the
assembly listing:

address machine code mnemonic comment
7D00 010000 LD BC,+xxxx The user will enter different
values here.

7D03 Cc9 RET ‘Return to BASIC'.

112

—

In program 3 the instruction ‘LD BC,+dddd’ is used and the user is invited
to enter different values. The value entered has to be split into ‘high’ and ‘low’
parts before it can be POKEd into the appropriate memory locations.

Program 3. ‘LD BC,+dddd’

Lines 10 — 4@. The Hex loader as given above.

50 DATA “01”,"00", 00"

51 DATA “C9" “**"

60 INPUT “Enter value for the
BC register pair (3—65535 only)"’
;CHR$ 32;N

70 CLS

80 POKE 32001,N—256*INT (N/256
): POKE 32002,INT (N/256)

90 PRINT AT 10,0;"BC register
pair now holds’;CHR$ 32;USR 3200
0

100 GO TO 60

Group 3. Register copying and exchanging instructions. (see also page 73)
The register-to-register copying instructions can be demonstrated by loading
registers, other than the B & C registers, with constants and then copying
those constants to the B & C registers for returning to the user.

The next program shows the ‘LD C,L’ instruction being used.

address machine code mnemonic comment

7D00 06 00 LD B,+00 Make the B register zero.
7D02 2E 00 LD L,+xx Enter different values.
7D04 4D LD C,.L Copy ‘L to C'.

7D05 C9 RET ‘Return to BASIC'.

In program 4 the user is invited to enter different values into the L register
and then have them returned in the C register.

Program 4. ‘LD C,L’
Lines 10 — 40. The Hex loader as given above.
50 DATA “@6"," 00", 2E"," 00"
51 DATA “4D",""C9"" *“**"
60 INPUT ““Enter a value for th
e L register (3—255 only)";CHRS 3
2;N
70 CLS
80 POKE 32003,N
90 PRINT AT 10,0;"The C regist

113

er now holds’’; CHR$ 32;USR 32000
100 GO TO 60

The reader is encouraged to try other instructions from this group.

For example:
50 DATA “06", 00", QE" ,"@@"
51 DATA ““65","'7C","'67","BF "
52 DATA "“4B",""C9"' *“**"

is perfectly valid. Do you see just what is being done here? The instruction
‘EX DE,HL' can also be included in program 4. For example by including the
following routine.

address machine code mnemonic comment

7D00 26 00 LD H,+00 Make the H register zero.
7D02 2E 00 LD L, +xx Enter different values.
7D04 EB EX DE,HL Move value to DE.

7D05 42 LD B,D Move D to B and

7D06 4B LD C,E E to C.

7D07 C9 RET ‘Return to BASIC'.

This would give a DATA list as follows:
50 DATA "'26","0Q","2E"," 00"
51 DATA “EB","42",""4B"
52 DATA “CQ", “**"

and can be used with program 4.

The last two instructions in this group are ‘EX AF,A‘F” and ‘EXX’. In
the SPECTRUM system the user is perfectly allowed to use the alternate
register set with the exception of H’ & L' that contain the ‘return address to
BASIC’. The reader might like to try including these instructions in program
4.

For example:

50 DATA “06","@@",'“2E"," 0¢"
51 DATA “08",“D9",”’D9","08"
52 DATA “4D" “C9" *“**"

or something more ambitious.
{Line 51 simply switches all the main registers and then switches them
back, unaltered.)

Group 4. Instructions for the loading of registers with data copied from a
memory location. (see also page75.)

The instructions in this group allow the user to load registers with copies of
the data contained in addressed locations. This addressing can be ‘absolute’,
‘indirect’ or ‘indexed’.

114

e

The first routine shows absolute addressing. A location, 31,999, is given
the name STORE and a ‘LD A,(addr)’ instruction is used to fetch the con-
tents of STORE using the following routine. In the listing the first line
‘equates’ STORE with the location hex. 7CFF, decimal 31,999.

STORE equ. 7CFF

address machine code mnemonic comment

7D00 06 00 LD B,+00 Make the B register zero.
7D02 3A FF7C LD A,(STORE) Fetch current value.
7D05 4F LD CA Move A to C.

7D06 C9 RET ‘Return to BASIC'.

In program 5 the user is invited to enter different values to be held in the
location ‘STORE’. The program then uses the above routine to return the
value to the user.

Program 5. ‘LD A, (addr)’

Lines 10 — 40. The Hex loader as given above.

5@ DATA “06", 00"

51 DATA “3A","FF",”7C"

52 DATA “4F" “C9" "**"

60 INPUT “Enter a value for lo
cation STORE (§—255 only)”’; CHR$ 3
2;N

70 CLS

80 POKE 31999,N

90 PRINT AT 10,0;"The location

STORE now holds”;CHR$ 32;USR 32
000

100 GO TO 60

The second routine shows indirect addressing. In this routine the address of
STORE is first loaded into the HL register pair before a ‘LD C,(HL)’ instruc-
tion is used.

STORE equ. 7CFF

address machine code mnemonic comment

7D00 06 00 LD B,+00 Make the B register zero.

7D02 21 FF7C LD HL,+STORE Make the HL register pair
point to STORE.

7D05 4E LD C,(HL) Fetch the current value.

7D06 C9 RET ‘Return to BASIC'.

In program 6 the user is once again invited to enter different values to be held
in the location ‘STORE".

115

Program 6. ‘LD C,(HL)’
Lines 10 — 40. The Hex loading as given above.
50 DATA 06" ,"00"
51 DATA “21","FF","“7C"
52 DATA ““4E" “CQ" “**"
Lines 6@ — 100 as given in program 5.

The third routine shows indexed addressing. In the routine the location
31,936, hex. 7CCO, is called BASE and the location STORE, 31,999, hex.
7CFF, is considered as ‘BASE + 3F’. A ‘LD C,(IX+d)’ instruction is then
used to get the current value of STORE.

BASE equ. 7CCO

STORE equ. BASE+3F
address machine code mnemonic comment
7D00 06 00 LD B,+00 Make the B register zero.
7D02 DD21C07C LD IX,+BASE Set the IX register pair.
7D06 DD 4E 3F LD C,(BASE+3F) Fetch the current value.
7D09 C9 RET ‘Return to BASIC'.

In program 7 the user is once again invited to enter different values to be held
in the location ‘STORE"’.

Program 7. ‘LD C,(IX+d)’
Lines 10 — 40. The Hex loader as given above.
50 DATA ‘06", 00"
51 DATA “DD",”21","C@",“7C"
52 DATA “DD","4E","3F"
53 DATA ““CQ" “**
Lines 6@ — 100 as given in program 5.

In program 7 the IX register pair has been used but it is quite possible to use
the 1Y register. pair if preferred. The mnemonics will need to be changed so
as to read 1Y instead of IX and the machine code bytes DD changed to read

FD. Note that the maskable interrupt will need to be disabled whilst the IY
holds a new value.

Group 5. Instructions for loading locations in memory with data copied
from registers, or with constants. (see also page 78.)

The instructions in this group allow the user to load addressed locations with
data copied from registers or with constants. Once again ‘absolute’, ‘indir-
ect’ and ‘indexed’ addressing are possible.

The first routine shows absolute addressing. In the routine the absolute
address for the location 31,999, hex. 7CFF, and named ‘STORE’ is used in
a ‘LD (addr),A’ instruction.

STORE equ. 7CCF

116

S —

address machine code mnemonic comment

7D00 3E 00 LD A, +xx Enter different values.

7D02 32FF 7C LD (STORE),A Enter the current value into
STORE.

7D05 Cc9 RET ‘Return to BASIC'.

In program 8 the user is again invited to enter different values for passing to
the location STORE. The machine code routine is executed by using RAN-
DOMIZE USR 32000 and the value in STORE recovered by using PEEK

31999.

Program 8. ‘LD (addr) A’

Lines 10 — 40. The Hex loader as given above.

50 DATA ““3E","00@"

51 DATA “32","FF","7C"

52 DATA ““C9"" **"

60 INPUT “Enter a value for lo
cation STORE(#—255 only)’’;CHR$ 3
2;N

70 CLS

80 POKE 32001,N: RANDOMIZE USR
32000

90 PRINT AT 10,8, The location
STORE now holds”; CHR$ 32; PEEK 3
1999

100 GO TO 60

The second routine shows indirect addressing. In the routine the HL register
pair is set to point to the location STORE and a ‘LD (HL),E’ instruction is
used to make the transfer.

STORE equ. 7CFF
address machine code mnemonic comment
7D00 1E 00 LD E,+xx Enter different values.
7D02 21 FF7C LD HL,+STORE Make the HL register pair
point to STORE.
Make the transfer.
‘Return to BASIC'.

7D05 73 LD (HL).E
7D06 Cc9 RET

In program 9 the user is again invited to enter values to be transferred to
STORE and read back by PEEK 31999.

Program 9. ‘LD (HL),E’
Lines 10 — 40@. The Hex loader as given above.
50 DATA “1E",” 00"
51 DATA “21","FF","7C"

117

52 DATA ”73",“09",“**"
Lines 60 — 100 as given in program 8.

In the third routine indexed addressing is used. On this occasion location
32,061, hex. 7D3D, is called BASE and the location STORE is therefore
considered as ‘BASE — 3E’.

BASE equ. 7D3D

STORE equ. BASE—3E
address machine code mnemonic comment
7D00 3E 00 LD A, +xx Enter different values.
7D02 DD213D7D LD IX,+BASE Make the IX register pair

point to BASE.

7D06 DD 77 C2 LD (IX-3E),A ‘IX—3E’is taken as ‘IX+C2’".
7D09 c9 RET ‘Return to BASIC'.

In program 10 the user is again invited to enter values to be transferred to
STORE and read back by PEEK 31999.

Program 10. ‘LD (IX+d) A’
Lines 10 — 40@. The Hex loader as given above.
5@ DATA ““3E","@0"
51 DATA “DD",”21",“3D",""7D""
52 DATA “DD","77","C2"
53 DATA ““C9”,"“**"

Programs 5 — 10 have all used single byte numbers but the reader is urged
to adapt the programs to use 2-byte numbers and the corresponding register
pair instructions.

Group 6. The addition instructions. (see also page 80)
The instructions in this group allow the user to add values together (ADD),
increment values (INC) and add with carry (ADC).

The first routine shows an ‘ADD A,B’ instruction being used.

address machine code mnemonic comment

7D00 00 NOP For use later.

7D01 3E 00 LD A, +xx Enter two different

7D03 06 00 LD B,+xx values into these registers.
7D05 80 ADD A,B Make the addition.

7D06 06 00 LD B,+00 Make the B register zero.
7D08 4F LD CA Transfer the ‘result’.
7D09 Cco RET ‘Return to BASIC'.

In program 11 the user is invited to enter two numbers. These numbers are
transferred to the A & B register and added together in absolute binary
arithmetic. The result is returned by the USR function.

118

Program 11. ‘ADD A,B’

Lines 10— 40. The Hex loader as given above.

5@ DATA “‘0@","'3E","0@"

51 DATA ““@6"," 00", 80"

52 DATA (06", 00" ,"“4F"

53 DATA ““C9"" “**"

60 INPUT ““Enter a first value
(@—255)"";CHR$ 32;F

70 INPUT ““Enter a second value
(@—2565)’";CHRS 32;S

80 CLS

90 POKE 32002,F: POKE 32004,S

100 PRINT AT 10,5;F;CHR$ 32;”AD
D":CHR$ 32;S;CHR$ 32;"="";CHR$.32

;USR 32000
110 GO TO 60
The second routine for this group of instructions uses an ‘INC BC’ instruction.
address machine code mnemonic comment
7D00 01 00 00 LD BC,+xxxx Make the BC register pair
hold different values.
7D03 03 INC BC Increment the value.
7D04 Cc9 RET ‘Return to BASIC'.

In program 12 the user is invited to enter a number in the range 0 — 65,535.
This number is then split into high and low parts and POKEd into locations
7D01 & 7D02. The BC register pair is then incremented and the value returned
by the USR function.

Note the effect of entering the value 65,535.

Program 12. ‘INC BC’

Lines 10 — 40. The Hex loader as given above.

50 DATA “01",00"," 00"

51 DATA “@3","“C9",“**"

60 INPUT ““Enter a value (§—655
35)"";CHR$ 32;N

70 POKE 32002, INT (N/256)

80 POKE 32001,N—256*INT (N/256
)

90 CLS

100 PRINT AT 10,8;N;CHRS 32;"in
crements to give'’;CHR$ 32;USR 32
000

110 GO TO 60

119

The third routine shows an ‘ADC A,B’ instruction being used. (This is the
same routine as used in program 11 but changed to include the ‘ADC A,B’

instruction rather than the ‘ADD A,B".)

address machine code mnemonic comment

7D00 37 SCF Set the carry flag.

7D01 3E 00 LD A, +xx Enter different values

7D03 06 00 LD B,+xx into these registers.

7D05 88 ADC A,B Make the addition with carry.
7D06 06 00 LD B,+00 Make the B register zero.
7D08 4F LD CA Transfer the ‘Result’.

7D09 Cc9 RET ‘Return to BASIC'.

This routine is used in program 13.in which the user is invited to add two
numbers together with carry. The carry flag is always set.

Try the effect of changing the instruction ‘SCF’ to ‘AND A’ (hex. A7)
which will give carry reset.

Program 13. ‘ADC A,B’

Lines 10 — 40. The Hex loader as given above.

50 DATA ““37","3E","00""

51 DATA ‘06", 00","'88"

52 DATA “06","00"," "4F"

53 DATA “/C9*" “**"

60 INPUT ““Enter a first value
(0—255)"";CHRS 32;F

70 INPUT “Enter a second value

(@—255)"";CHR$ 32;S

80 CLS

90 POKE 32002,F: POKE 32004,

100 PRINT AT 10,0;“With carry s
et’;CHRS$ 32;F;CHRS 32;ADC’;CHR$

32;S,CHR$ 32;"="";CHR$ 32;USR 32000

Group 7. The subtraction instructions. (see also page 82)
The instructions in this group allow the user to subtract values from each
other (SUB), decrement values (DEC) and subtract with carry (SBC).

The first routine for this group of instructions uses a ‘SUB B’ instruction.
The state of the carry flag after the subtraction is determined and the value,
Oor 1, is saved in the location STORE.

STORE equ. 7CFF
address machine code mnemonic comment
7D00 00 NOP For use later.

120

7D01 3E 00 LD A,+xx Enter two values

7D03 06 00 LD B,+xx into these registers.

7D05 90 SUB B The subtraction.

7D06 06 00 LD B,+00 Make the B register zero.

7D08 4F LD CA Transfer the ‘result’.

7D09 3E 00 LD A,+00 Make the A register zero.

7D0B CE 00 ADC A,+00 Add with carry.

7D0OD 32FF7C LD (STORE),A Transfer the ‘value of the
carry’ to STORE.

7D10 C9 RET ‘Return to BASIC'.

In program 14 the above routine is called after the user has entered values for
the A & B registers. The value of the carry flag is obtained by using PEEK
31999.

Program 14. ‘SUB B’

Lines 10 — 40@. The Hex loader as given above.

50 DATA “00","3E","00"

51 DATA “@6","00"," 90"

52 DATA “06","00"," 4F"

53 DATA ““3E",”0Q","CE", 00"

54 DATA “32",'FF","7C"

55 DATA “C9”,“**"

60 INPUT “Enter a first value
(0—255)"";CHRS 32;F

70 INPUT “Enter a second value
(@—255)"";CHR$® 32;S

80 CLS

90 POKE 32002,F: POKE 32004,S

100 PRINT AT 10,8;F;CHR$ 32;"SU
B’":CHR$ 32;S;CHRS 32;"="";CHRS 32
;USR 32000;CHR$ 32;"with carry’’;
CHR$ 32;"set” AND PEEK 31999;"re
set” AND NOT PEEK 31999

110 GO TO 60

Try the above program with numbers that are ‘less than’, ‘greater than’ and
‘equal’ to each other.

The second group of instructions in this group contains the DEC instruc-
tions.

The ‘DEC BC' instruction can be demonstrated by making the appropriate
amendments to program 12,

They are:

Change Line 51 & 100 to read:

121

51 DATA “@B",“C9" “**"

10¢ PRINT AT 10,8;N;CHRS® 32;"de
crements to give”’;CHR$ 32;USR 32
000

The third subgroup of instructions in this group contains the SBC instructions.

The ‘SBC A,B’ instruction can be demonstrated by making the appropriate
amendments to program 14.

They are:
Change lines 5@, 51 & 100 to read:
5@ DATA “37"","3E","00" for carry set.
or, 5@ DATA ““A7",“3E","00"" for carry reset.
51 DATA ““06","00"," 98" ‘SBC A,B’is hex. 98.

100 change “SUB" to read “SBC"

Once again try the effect of numbers that are ‘less than’, ‘greater than’ and
‘equal’ to each other.

Note that there is no difference in the results between ‘SUB’ and ‘SBC
with carry reset’.

Group 8. The Compare instructions. (see also page 85)
The compare instructions are in effect the same as the SUB instructions apart
from the fact that the A register is unchanged. The carry flag is affected and
can subsequently be tested.

The instruction ‘CP B’ can be demonstrated by once again making the
appropriate changes to program 12.

They are:
Change lines S1 & 100 to read:
51 DATA ““06","0@","B8"" ‘CP B’is hex. B8.

100 PRINT AT 10,0;F;CHRS 32;‘CP
""*CHR$ 32;S;CHR$ 32;"gives carry
"".CHR$ 32;

and add lines 101 & 102.

101 RANDOMIZE USR 32000

102 PRINT ““re’” AND NOT PEEK 319
99;"set”’

Group 9. The Logical instructions. (see also page 86)
The instructions in this group allow the user to logically AND, OR and XOR
two 8-bit numbers.
The following routine shows a ‘“AND B’ instruction being used to logically
AND two values entered by the user.
STORE equ. 7CFF

122

address machine code mnemonic comment

7D00 3E 00 LD A, +xx Enter two values

7D02 06 00 LD B,txx into these registers.
7D04 A0 AND B Logical AND.

7D05 32FF 7C LD (STORE),A Copy result to STORE.
7D08 Cc9 RET ‘Return to BASIC'.

In program 15 the above routine is used. The user is asked to input two
values in turn. As each value is entered it is displayed in its binary form. The
result is collected from STORE by using — PEEK 31999, and also displayed
in binary form.
Program 15. ‘AND B’

Lines 10 — 40. The Hex loader as given above.

50 DATA ““3E"," 00"

51 DATA 06", 00"

52 DATA ““A@"

53 DATA ““32”,"FF","7C"

54 DATA “C9”",“**"

6@ INPUT ““Enter a first value

(0—255)"";CHR$ 32;F

70 CLS

80 POKE 32001,F

90 PRINT AT 8,4;: GO SUB 300

100 PRINT AT 10,8;"AND"

110 INPUT ““Enter a second value

(@—255)"";CHRS 32;S
120 POKE 32003,
130 PRINT AT 12,4;: LET F=S: GO
SUB 300

140 PRINT AT 14,7;"gives”

150 RANDOMIZE 32000

160 PRINT AT 16,4;: LET F=PEEK

31999: GO SUB 300
176 GO TO 60

300 REM Binary of F

310 FOR N=7 TO 1 STEP —1

320 LETP=2 TN

330 PRINT CHRS (48+INT (F/P));C
HR$ 32;

340 LET F=F—INT (F/P)*P

350 NEXTN

360 PRINT INT F

370 RETURN

123

Program 15 can be adapted to demonstrate the instructions ‘OR B’ and
‘XOR B'.
For ‘OR B’ the required changes are to lines 52 & 100 as follows:
52 DATA “B@”
100 PRINT AT 10,8;,0OR"’

and for ‘XOR B’ they are:
52 DATA “A8"
100 PRINT AT 10,8, X0OR"

The reader is encouraged to become familiar with these three logical opera-
tions.

Group 10. The Jump instructions. (see also page 89)
The seventeen machine code instructions in this group allow the user to make
jumps from one part of a machine code routine to another. The jumps can be
relative, i.e. —128 to +127 decimal locations from the present Program
Counter location, or absolute, i.e. an address of a location is given. A jump
can also be made conditional on the state of a major flag although it is only
with the absolute jump instructions that there is a full range of instructions
available.

The following routine will be used in program 16 to demonstrate the
instructions in this group.

NEXT equ. 7DOF

address machine code mnemonic comment

7D00 3E 00 LD A, +xx Enter two values and compare
7D02 FE 00 CP +xx them so as to set the flags.
7D04 010000 LD BC,+0000 Set BC to zero.

7F07 18 06 JR NEXT Jump forward to ‘NEXT’.
7D09 00 NOP For later use.

7D0A C9 RET ‘Return’ if no jump made.
7D0B 00000000 — Four unused locations.

7DOF 03 INC BC Increment BC as jump made.
7D10 Cc9 RET ‘Return to BASIC'.

In the above routine the BC register pair will be returned holding zero if ‘no
jump’ is made but will contain ‘1" if a ‘jump’ is made.

Program 16 shows this routine being used to demonstrate the ‘JR e’ instruc-
tion. This instruction is unconditional so the jump will be regardless of the
result of the ‘test’ entered by the user.

Program 16. ‘JR e’
Lines 10 — 40. The Hex loader as given above.

124

50 DATA ““3E"”, 00"

51 DATA ‘FE”, “00"”

52 DATA “@1","008","00"

53 DATA ““18","@6"," 00"

54 DATA "“'C9"”

55 DATA “¢0",“00"," 00", 00"

56 DATA “@3",“C9" “**"

60 PRINT AT 4,0;”Instruction —

70 PRINT ““JR e'"

80 PRINT AT 8,8;"Test —",

90 INPUT “‘Enter a first value
(@—255)"";CHRS 32;F

100 PRINT F;CHR$ 32;“CP""; CHR3 3
2;

110 INPUT ““Enter a second value
(p—2565)"";CHR$ 32;S

120 PRINTS

130 PRINT AT 12,¢;"JUMP —",

140 POKE 32001,F: POKE 32003,

150 LET R=USR 3200@: PRINT “NO”
AND NOT R;”“YES"” AND R

160 PRINT AT 21,8;"Any key to c

ontinue”’

170 PAUSE 50

180 IF INKEY$=""" THEN GO TO 180

190 CLS: GO TO 60

In the above program the user is asked to enter two values. A ‘compare’
operation is then made and a jump ifitis needed. The variable R will be zero if
‘no jump’ is taken and ‘1" if it is.

The program has been written so that the user can, by amending only
lines 53 & 70, demonstrate fourteen of the seventeen jump instructions.

For the relative jump instructions the changes are:

IJR Nz,e, = 53 DATA “20”,“96”,”0@”
70 PRINT “*JR NZ,e'"

IJR z . 53 DATA “28”,“06”,““0”
7O PRINT ““JR Z,e'"

‘JR NC,e’ — 53 DATA ““30",""@6","00"
70 PRINT “JR NCe'"

IJR C,e, _ 53 DATA “38”,““6”,“00"

70 PRINT “"JR Ce'”

125

The absolute jump instructions are demonstrated by changing the machine

code routine so that an absolute jump to location ‘'NEXT’ at 7DOF is made.
The instruction line will now read — using ‘JP addr’:

address machine code mnemonic comment

7D07 C30F 7D JP NEXT Jump forward to ‘NEXT".

The changes to program 16 will be:

JP addr’ — B3 DATA “C3","“@F","”7D"
70 PRINT ““‘JP addr’ "
‘JP NZ,addr’ — 53 DATA “C2","@F","7D"
70 PRINT ““JP NZ,addr" "
‘JP Z,addr’ — B3 DATA “CA","@F","7D"
70 PRINT ““JP Z,addr""
‘JP NC,addr’ — B3 DATA “D2","@F"”,”7D"
70 PRINT “““JP NC,addr" "
‘JP C,addr’ — 53 DATA “DA",“@F","“7D"
70 PRINT ““‘JP C,addr"”
‘JP PO,addr’ — 53 DATA “E2","@F","7D"
70 PRINT “UP PO,addr" "
'SP PE,addr’ — 53 DATA “EA",“@F",7D"
70 PRINT ““JP PE,addr"”
‘JP P’addr' — 53 DATA “F2”,”0F",”7D"
70 PRINT “*“JP P,addr""”
‘JP M,addr’ — B3 DATA “FA","@F","7D"

70 PRINT ““*JP M,addr’ "

The remaining three instructions in this group use indirect addressing and it is
left as an exercise for the interested reader to ammend program 16 to show
these instructions.

Group 11. The ‘DJNZ e’ instruction. (see also page 95)
The instruction ‘DJNZ,e’ is a most useful instruction and can readily be used
to produce simple ‘loops’ in a machine code program.

To use a ‘DINZ,e’ instruction the programmer has first to specify the num-
ber of loops required and this number has to be copied to the B register. The
‘work’ of the loop can now be done and the ‘DJNZ,e’ instruction is put after
the ‘work’ to act in a ‘NEXT B’ manner.

The following four line BASIC pregram will print out the alphabet, in
capitals, over and over again. The prompt ‘scroll?’ appears when the screen is
full.

126

10 FOR A=65 TO 90
20 PRINT CHRS$ A;
30 NEXT A

40 GOTO 10

The following machine code routine shows this same operation being per-
formed. But note that the programmer can only use ‘STEP —1’
LOOP equ. 7D02

address machine code mnemonic comment

7D00 06 1A LD B,+1A There are to be dec. 25 loops
back from ‘DJNZe’.

7D02 3E 5B LD A,+5B ‘A’ is hex. 5BB—1A.

7D04 20 SUB B Value is in the A register.

7D05 D7 RST 0010 Prints the character — see
later.

7D06 10 FA DJNZ,LOOP Back for another letter if

7D08 Cc9 RET needed; otherwise ‘return’.

Program 17 uses the above routine to print the alphabet on the T.V. screen.
Repeated calls to ‘USR’ 32000° will repeat the printing operation over and
over again.

Program 17. ‘DJNZ.e’
Lines 10 — 40. The Hex loader as given above.
50 DATA “06","1A"
51 DATA "“3E”,"5B"
52 DATA 90"
53 DATA “D7”
54 DATA “10","FA"
55 DATA “/C9" »“**"
60 PRINT
70 RANDOMIZE USR 32000
80 GOTO 70

Note: The inclusion of line 6@ is important as it opens the channel to the
‘main’ area of the display. If this instruction, or a similar one, is omitted then
the printing will be made in the ‘edit’ area.

Group 12. The Stack instructions. (see also page 96)
There are five subgroups of instructions in this group. The first subgroup
contains the ‘PUSH’ and ‘POP’ instructions and the second subgroup the
‘stack exchanging’ instructions.

The following routine is used in program 18 to demonstrate instructions
from the first subgroup.

127

address machine code mnemonic comment

7D00 210000 LD HL,+xxxx Enter different values.
7D03 E5 PUSH HL ‘PUSH’ this value.
7D04 C1 POP BC Now it is in BC.
7D05 Cc9 RET ‘Return to BASIC'.

In program 18 the user is asked to enter a value. This value is then copied
into the HL register pair. It is subsequently passed to the machine stack.
Finally it is ‘POPped’ into the BC register pair.

Program 18. ‘PUSH HL' & ‘POP BC'

Lines 1@ — 40@. The Hex loader as given above.

50 DATA ““21","00"," 00"

51 DATA ““E5",”C1"”

52 DATA “C9","“**"

60 INPUT “Enter a value (0—655
35)"";CHR$ 32;F

70 POKE 32001,F—INT (F/256)*25
6: POKE 32002,INT (F/256)

80 CLS

90 PRINT AT 10,8;"'Value taken
off stack =";CHR$ 32;USR 32000

100 GO TO 60

The reader is encouraged to try alternative routines in the above program. But
care must be taken to ensure that the number of ‘PUSHes’ balances the
number of ‘POPs’.

The third- and fourth subgroups of instructions contain the ‘CALL’ and
‘RET' instructions.

The following machine code routine can be used to demonstrate the
different ‘CALL' instructions.

NEXT equ. 7DOF

address machine code mnemonic comment

7D00 3E 00 LD A, +xx Enter two values and
7D02 FE 00 CP +xx compare them.

7D04 010000 LD BC,+0000 The BC registers hold zero.
7D07 CDOF 7D CALL NEXT Call the subroutine.

7D0A C9 RET ‘Return to BASIC’

7D0B 00 00 00 00 — Four unused locations.
7DOF 03 INC BC BC now holds ‘1".

7D10 C9 RET Return from subroutine.

The above routine can be used in program 16 with the following changes for
the different instructions.

128

For all instructions:
130 PRINT AT 12,0;,“CALL —",

‘CALL addr’ — B3 DATA “CD",”@F","7D"
70 PRINT ““CALL addr’
‘CALL NZ,addr’ — G3 DATA “C4","@F","“7D"
70 PRINT “‘CALL NZ,addr" "
‘CALL Z,addr’ — B3 DATA ““CC”,"@F",“7D"
70 PRINT “'CALL Z,addr"”
‘CALL NC,addr’ — b3 DATA “D4",“@F","7D"
70 PRINT “‘CALL NC,addr"
‘CALL C,addr’ — b3 DATA “DC"”,"@F","7D"
70 PRINT “‘CALL C,addr" "
‘CALL PO,addr’ — b3 DATA “E4","@F","7D"
70 PRINT ““/CALL PO,addr"
‘CALL PE,addr’ — b3 DATA “EC","@F","7D"
70 PRINT “‘CALL PE,addr" "
‘CALL P,addr’ — b3 DATA “F4”,“@F","7D"
70 PRINT ““CALL P,addr" "
‘CALL M,addr’ — 53 DATA “FC”,"“@F",""7D"

70 PRINT “‘CALL M,addr" "

The following machine code routine can be used to demonstrate the ‘RET’
instructions. However it has been left as an exercise for the reader to make
the necessary amendments to program 16.

address machine code mnemonic comment

7D00 3E 00 LD A,+xx Enter two values and
7D02 FE 00 CP +xx compare them.

7D04 010100 LD BC,+0001 Make the BC pair hold ‘1",
7D07 D8 RET C Return if carry set.

7D08 0B DEC BC BC will now hold zero.
7D09 Cc9 RET An ordinary return.

Note: In the above routine the ‘RET C’ instruction is being demonstrated.
Also the logic has been changed so that program 16 will give ‘“YES' if the
conditional return is made.

The ‘RST’ instructions will be discussed in chapters 7 & 8.

Group 13. The Rotation instructions. (see also page 99)

There are a large number of Rotation instructions in the Z80 instruction set.
The following routine is used in program 19 to demonstrate the seven

types of rotation that involve the C register.

129

STORE equ. 7CFF K 31999
address machine code mnemonic comment 170 PRINT AT 21,8;Any key toc
7D00 AF XOR A Clear the A register. ontinue”
7D01 FE 00 CP +xx Compare against a value. 180 PAUSE 50
Zero gives carry reset; 190 IF INKEY$=""" THEN GO TO 190
‘1’ gives carry set. 200 CLS: GO TO 60
7D03 06 00 LD B,+00 Make the B register zero. 300 REM Binary of F
7D05 OE 00 LD C,+xx Give the C register a value. 310 FOR N=7 to 1 STEP —1
7D07 CBO1 RLC C Make a rotation. 320 LET P=2TN
7009 3E00 LD A,+00 Make the A register zero. 330 PRINT CHR$ (48+INT (F/P));C
7D0B CEO0O ADC A,+00 Will transfer the state of HR$ 32;
700D 32FF7C LD (STORE),A the carry flag to STORE. 340 LET F=F—INT (F/P)*P
7010 €9 RET ‘Return to BASIC'. 350 NEXT N
360 PRINT INT F
In program 19 the user is asked to enter ‘0’ or ‘1’ in order to make the carry 370 RETURN
flag reset or set. The next prompt asks for a ‘value’. This is copied to the C
register and rotated as required. The ‘result’ is printed together with the Program 19 can be used to demonstrate the seven instructions that use the
current value of the carry flag. C register.

The required changes are:
‘RLC C’ — b2 DATA “CB”,"“01"
70 PRINT “‘RLC C" "

Program 19. ‘RLC C’
Lines 10 — 40. The Hex loader as given above.
50 DATA “AF”,“FE”,“GG”

51 DATA “@6","00","0E", 00" ‘RRC C’ — 52DATA “CB","g9"
52 DATA HCB"’I'Q'I” 7@ PR'NT = 'RRC C’ £
53 DATA ““3E”,"00","CE","00" ' ‘RL C’ — 52 DATA “CB”,"“11"”
54 DATA “32","FF","7C" 70 PRINT “‘RL C" "
55 DATA “C9","“**" . . HuER Qe
60 PRINT AT 2,0;"Instruction — it SROATA (Chig 19
* 70 PRINT “'RR C" "
70 PRINT “ RLC C' ‘SLA C’ — b2 DATA “CB”,"21"
80 INPUT ““Carry reset or set? 70 PRINT “ ‘SLA C'
(@/1)";CHR$ 32;,C ‘SRA C’ — B2 DATA “CB",""29"

90 POKE 32002,C 70 PRINT “‘SRA C' "
100 PRINT AT 6,8;CARRY —",C ’ ;
110 INPUT “Enter a value (0—255 e ~ wBRDATR CBipcSy

\"-CHRS 32:F 70 PRINT “‘SRL C"”
120 POKE 32006,F If wished the routine in program 19 can be changed to demonstrate the four
130 PRINT AT 10,0;“Initial valu single byte instructions.

e’’;: GO SUB 300
140 LET F=USR 32000 Group 14. The ‘Bit handling’ instructions. (see also page 102)
15@ PRINT AT 14,0;Final value The instructions in this group can be split into three subgroups.

,: GO SUB 300 The RES & SET instructions are not commonly used instructions and no
160 PRINT AT 18,0;“CARRY —'*, PEE : BASIC program is given here to demonstrate their use. The reader however is

130 131

welcome to write simple programs that use these instructions.

The BIT instructions are by far the most useful instructions in this group
and the following program shows ‘BIT 7,H’ being used in an impressive
manner.

Program 20 is a ‘Binary’ printing program. The user is asked to enter an
integer in the range 0—65,5635. The machine code routine is then called to
print out the binary form.

The number given by the user is transferred to the HL register pair and bit
7 of the H register is read and the required ‘@’ or ‘1’ js printed. The H & L
registers are then shifted leftwards, the carry from L being picked up by H.
Once again bit 7 of the H register is read and the digit printed. This operation
of reading and shifting is performed sixteen times to build up the complete

binary number.
The routine is:

LOOP equ. 7D05

PRINT equ. 7D0C

address machine code mnemonic comment

7D00 210000 LD HL,+xxxx The value entered.

7D03 06 10 LD B,+10 There are 16 bits.

7D05 CB7C BIT 7,H Test the lefthand bit.
7D07 3E 30 LD A/Q Prepare to print zero.
7D09 28 01 JR ZPRINT Jump if zero needed.
7D0B 3C INC A Now the character “1°.
7D0C D7 RST 0010 Print the ‘@’ or the ‘1".
7D0D 3E 20 LD A/ sp.. Prepare to print a ‘space’.
7DOF D7 RST 0010 Print the ‘space’.

7D10 CB 15 RL L Rotate L.

7D12 CB 14 RL H Rotate H picking up carry.
7D14 10 EF DJNZ,LOOP Back until finished.
7D16 C9 RET ‘Return to BASIC’

Program 20 below shows this routine being used.

Program 20. ‘BIT 7,H’
Lines 101 — 40. The Hex loader as given above.
50 DATA “21”, 00" ,"00"

51 DATA “@6","1@",“CB","7C"
52 DATA ““3E"”,"“3@","“28",“@G1"
53 DATA ““3C","D7"”

b4 DATA “3E","20",“D7”

55 DATA “CB”,””15","’CB","14"
56 DATA “10,“EF",“CQ"" »**"
60 INPUT ““Enter a value (#—655

132

35)""; CHRS 32;F

70 POKE 32001,F—INT (F/256)*25
6

80 POKE 32002,INT (F/256)

90 CLS

100 PRINT AT 10,8;“Binary of"’;C

HR$ 32;F

110 PRINT AT 12,14;“is"

120 PRINT AT 14,0;

130 RANDOMIZE 32000

140 GO TO 60

Group 15. The Block handling instructions. (see also page102)
The instructions in this group allow the user to move blocks of data or to
search blocks of data.

Of all the instructions in the group the ‘LDIR’ instruction is by far the
most common.

The following routine uses the ‘LDIR’ instruction to copy the ‘top third’
of the display area to the ‘middle third’. This means that whenever the
routine is called all the bytes in locations hex. 4000—47FF are copied to loca-
tions 4800—4FFF. The user can see that this has occurred as all the characters
that were in lines 0—7 became duplicated in lines 8—15.

The routine is:

address machine code mnemonic comment

7D00 210040 LD HL,+4000 The top-left of the display.
7D03 110048 LD DE,+4800 The start of line 8.

7D06 010008 LD BC,+0800 There are 2,048 locations.
7D09 ED BO LDIR Move the block.

7D08B C9 RET ‘Return to BASIC’,

Program 21 uses this routine.

Program 21. ‘LDIR’
Lines 10 — 40. The Hex loader as given above.
50 DATA ““21"”,"0@","4Q"
51 DATA “11"”,"00@"," 48"
52 DATA “01","00","@8"
53 DATA “ED"”,"B@""
54 DATA "“C9” »**
60 INPUT “Enter your character
s — 8 lines”";C%
70 PRINT C8
80 RANDOMIZE USR 32000

133

Note that a ‘LDIR’ or ‘LDDR’ can be used to duplicate ‘thirds’ of the display
but that the physical arrangement prevents these instructions being used for
other types of copying that involve whole character areas.

The following routine demonstrates the ‘CPIR’ instruction. Program 22
that uses the routine gives the address of the first location in the 16K ROM of
the SPECTRUM that holds a specific byte. When the program is run it can be
seen that all the values from 0—255 decimal are to be found in the ROM but
that the value decimal 154 has its first occurrence at location 11,728 and is
therefore a rarely used value in this particular ROM.

The routine is:

address machine code mnemonic comment

7D00 3E 00 LD A,+xx The matching value.

7D02 01 FF 3F LD BC,+3FFF The top location of the ROM.
7D05 210000 LD HL,+0000 The firstlocation of the ROM.
7D08 ED B1 CPIR Search the ROM.

7D0A 44 LD B,H Move the high address byte.
7D0B 4D LD C,.L Move the low address byte.
7D0C 0B DEC BC Point to the matching

7D0D C9 RET location and return.

Program 22 that uses this routine is:

Program 22. ‘CPIR’

Lines 10 — 40. The Hex loader as given above.

5@ DATA “3E"”,"0@"

51 DATA “@1",“FF","3F"

52 DATA ““21","@@",“@@"

53 DATA “ED"”,”B1","”44",""4D"

54 DATA “@B” "“C9" "**"

60 FOR A=0 TO 255

70 POKE 32001,F

80 PRINT F;TAB 4;"occurs first
at loc.””;CHR$ 32;USR 32000

90 NEXT F

The reader might like to try rewriting these programs using the non-automatic
instructions.

There are no demonstration programs given here for the ‘Input and Output
instructions’, ‘the Interrupt instructions’ or the small group of miscellaneous
instructions, but once again the reader is encouraged to try writing appropri-
ate programs.

134

7. UNDERSTANDING — An outline of the 16K monitor program

7.1 Why study the monitor program?

The SPECTRUM system is provided with a 16K ROM (read only memory)
that provides:

i. An operating system.
ii. A BASIC interpreter.
iii. A character set of 96 characters.

The ROM holding the monitor program occupies locations decimal 0-16,383,
hex. 0000—3FFF, and cannot be moved from this area in the standard SPEC-
TRUM system. The machine code instruction at loeation zero is the first
instruction to be executed when power is first applied to the system.

The monitor program of the SPECTRUM is well worth studying for the
following reasons:

i. The subroutines in the monitor program are always available to be
‘called’ from user-written machine code programs. So doing will consid-
erably shorten a machine code program.

ii. The monitor program shows how SINCLAIR RESEARCH have tackled
certain problems and the tecnhiques used can be copied.

iii. The monitor program is a machine code program of some size and it is
instructive to see how a large program can be structured.

The different parts of the monitor program will now be discussed in turn.
First as they are used in a ‘system view' and then as they occur in the monitor
program itself.

7.2 A ‘system view’ of the monitor program.

The user of a SPECTRUM system is usually unaware that the microprocessor
at the centre of the system follows the machine code program held in the
16K ROM from the moment that the power is first applied to the system.
The only exception to this being when user-written machine code routines
are being executed.

To the user the SPECTRUM appears as a machine that waits for the user
to enter BASIC lines either in direct mode or with lines numbers so as to
build up a BASIC program. Direct BASIC lines are executed immediately and
may involve the interpretation of BASIC lines from a previously entered pro-
gram. The SPECTRUM system is a little complicated as the BASIC interpre-
ter is called to check the syntax of a BASIC line before it is stored in the pro-
gram area — if it had a line number, or before it is interpreted properly — if
it is a direct line.

135

The Operating System.

A study of the pathways through the monitor program starts, not unex-
pectedly, with the INITIALISATION routine that is entered when power is
first applied, or a jump is made to location zero. (RANDOMIZE USR @)

INITIALISATION:
This routine occupies locations 0000—0007 & 11CB—12A1.

The main tasks of this routine are to check that the memory is available
and to set the system variables to their required values. Further details will
be given later in the chapter.

The INITIALISATION routine ends with the writing of the SINCLAIR
copyright message on the bottom line of the display. Followihg this routine is
the MAIN EXECUTION routine.

MAIN EXECUTION:
This routine occupies the locations 12A2—15AE.

In the SPECTRUM system and THE MAIN EXECUTION routine can be
considered, as its name implies, to be the dominant routine in the monitor
program. -

It is this routine that calls, as necessary, the LIST command routine, the
EDITOR routine and the SYNTAX CHECKER as BASIC lines are added to
the program area. In the case of a direct BASIC line being entered then the
LINE—RUN routine is called and that single line interpreted — this may
involve the interpretation of the other BASIC lines. Then, on returning from
the LINE—RUN routine the ‘report’ is produced. Reference is made to the
table of error messages at locations 1391—1536 as required. A jump back to
near the start of the MAIN EXECUTION routine leads to the EDITOR rou-
tine being called again but note that in this instance there is no call to the
LIST command routine.

EDITOR:
This routine occupies the locations OF2C—10A7.

The EDITOR routine allows the user to build up a BASIC line apparently
at the bottom of the display. In reality the line is formed in the editing area
and then copied, with tokens expanded, to the display area.

The user can enter either characters or cursor controllers and the appropr-
ate subroutines are called as required.

Certain cursor controllers and ENTER lead to a return being made to the
MAIN EXECUTION routine.

In the standard SPECTRUM system the only input to the EDITOR routine
can be via the keyboard and the KEYBOARD—INPUT routine is called by
the EDITOR routine. This call is vectored through the channel information
area.

136

KEYBOARD-—INPUT:
This routine occupies the locations 10A8—111C.

This routine gets the code of the last key to have been pressed by reading
the system variable LAST—K.

Certain operations are performed within this routine, i.e. setting the CAPS
LOCK & graphics flags and fetching the second byte of the colour control
keys for the system variable K-DATA.

KEYBOARD:

The scanning of the keyboard is interrupt driven and occurs every 1/60 th. of
a second. There are five separate subroutines involved with the main KEY-
BOARD routine occupying locations 02BF—030F.

The actual scanning of the keyboard is performed by the KEY—SCAN sub-
routine at locations 028E—02BE. This subroutine returns an appropriate
key-value in the DE register pair which the other keyboard routines use to
produce the required character code.

PRINT—-OUTPUT:
In addition to the routines discussed above there are many other routines
that also form part of the operating system of the SPECTRUM.

The PRINT—OUTPUT routine at location 09F4—0D4C is possibly the
most important of these other routines.

This routine is in effect the routine called by using the machine code in-
struction ‘RST 0010’. The address of location 09F4 being obtained from the
channel information area.

The ‘RST 0010’ instruction will lead to the character, whose code is held
in the A register, being printed either on the T.V. display or the printer. The
flag that determines just where the output is to be made is repeatedly tested
in the routine and the appropriate path taken. In the SPECTRUM system the
PRINT—OUTPUT routine is very powerful as both character codes and
control codes are handled by the same routine.

In the case of printing to the T.V. display the current print position has to
be ‘fetched’ from the appropriate system variables, updated and then ‘stored’
once again. The print position indicates the line and column numbers of the
character area being used, and also the corresponding address in the display
file of the ‘top-left pixel’ of that character area. The PRINT-OUTPUT rou-
tie has subroutines that are called as necessary to transfer the sixty four bits
of a character from the ‘character set’ to the requisite locations in the display
file; another subroutine alters the attribute byte for that character area
according to the values held in the appropriate system variables. Note that
the ordinary characters are copied from the ‘character set’, user-defined
characters from the UDG area but that ‘graphics’ are computed as needed.

A similar operation applies to the passing of character forms to the printer

137

buffer for subsequent output to the printer but obviously certain control
codes are ignored.

In the SPECTRUM system every character that is printed on the T.V. dis-
play or the printer is handled by the PRINT—OUTPUT routine. The fact that
the routine caters for many different conditions leads to the routine being
fairly slow but nevertheless it is very useful.

The BASIC interpreter.
The interpreter part of the monitor program is called both for syntax check-
ing and for line-execution. In the most part the same routines are used for
both functions with the syntax/run flag being repeatedly tested to determine
whether or not operations should be performed.
e.g. In considering the line — LET A=1

the syntax checker would check the syntax but the line-executer would
actually give the value ‘1’ to the variable ‘A’.

In some ways therefore it can be convenient to consider the syntax checker
as being totally separate in function from the line-executer whereas in reality
it is not.

The different parts of the BASIC interpreter are:

The command tables:
These tables are to be found in locations 1A48—1B16.

In the SPECTRUM system there are fifty BASIC commands and the com-
mand tables contain the command class details, the required separator char-
acters and the command routine addresses.

The controlling routine:
The part of the monitor program in locations 1B17—1C00 contain the con-
trolling instructions that ensure the interpreter passes from one BASIC state-
ment to another as required in the program.

The entry point for the SYNTAX CHECKER is location 1B17 and for the
LINE—RUN operation location 1B8A.

The command class routines:

The part of the monitor program in locations 1CO01—1CDD is principally

concerned with the analysis of the parameters that follow BASIC commands.

e.g. The command NEXT is considered as being in class 4 as it is

required to be followed by a single character variable.
The command POKE is considered as being in class 8 as it is
required to be followed by two numeric expressions separated by
acomma.

The command routines:

Most of the command routines are to be found in locations TCDE—24FA.

138

The command routines concerned with input and output procedures are
generally to be found in the operating system part of the monitor program.
There is a command routine for each of the fifty BASIC commands and it
is the execution of these command routines that is the essence of BASIC
interpretation.
The interpretation of a BASIC statement can be illustrated as follows:

Consider the statement — 1@ CLS which is interpreted in a straightforward
manner. First the command is considered. In the present case it is ‘CLS," a
command that has no operand. The command routine for this command is
found, by reference to the command tables, at location 0D6B. The command
routine is then executed with the result that the display is cleared and the
attribute bytes set as required. The controlling routine then procedes with the
interpretation of the next statement.

Next the statement— 20 GO TO 50

In this case the command is ‘GO TO' and the command routine is at location
1E67. In this command routine the operand of the statement has to be
identified and entered into the system variable NEWPPC so that the control-
ling routine considers the first statement of line 5(as the next statement for
interpretation.

In this line — 20 GO TO 5@ the characters between the BASIC command
GO TO and the ‘carriage return’ character (or a colon) form an expression. In
the present case the evaluation of the expression is simple as the value is
obtained by evaluating the characters ‘6’ and ‘@’ to give a result equal to
decimal 50. However the BASIC interpretation of the SPECTRUM has a very
sophisticated ‘expression evaluator’ and this will be discussed next.

The expression evaluator:
This routine occupies locations 24FB—28B1.

In the SPECTRUM system the result obtained from evaluating an expres-
sion can be either numeric or string. A numeric result will be returned by the
expression evaluator as a five byte floating-point number at the top of the
calculator stack. In the case of a string result the five bytes will represent a
set of parameters that describe the string.

Expressions are evaluated from left to right with the different mathemati-
cal operations being given different precedent values. An operation with a
higher precedence is performed before one with a similar or lower preced-
ence. Certain operations, viz. FN, RND, PI, INKEY$, BIN,SCREENS, ATTR
& POINT, are performed actually within the expression evaluator but for all
other operations the CALCULATOR is used.

When a BASIC variable is used in an expression the expression evaluator
obtains the appropriate value for the variable by calling the appropriate
variable identifying routine.

139

The variable handling routines:
This set of routines occupy the locations 28B2—2ACB.

The routines return the current value or parameters of a given variable in
the variable area. In the case of an array variable the correct element or
elements have to be identified before the correct values can be returned and
in the case of a sliced string variable then the string parameters have to be
restricted as required.

Miscellaneous arithmetic routines:

The part of the monitor program that occupies locations 2C88—2F9A con-
tains a series of arithmetic routines. The most important of these are
STACK—BC at 2D2B — that converts the current value held in the BC register
pair to a floating-point number at the top of the calculator stack; and
PRINT—FP at 2DE3 — that takes the top value off the calculator stack,
converts it to its decimal form and prints it on the T.V. display or printer.

THE CALCULATOR:

This large and complicated routine occupies locations 2F9B—386D. It is nor-
mally called by using a ‘RST 0028’ instruction which acts as an indirect jump
to location 335B. In essence the CALCULATOR consists of sixty six sub-
routines that each perform a different operation. The calling of these sub-
routines is not normally done using ‘CALL’ instructions but rather by using
‘literals’ with hex. values 00—41.

e.g. Literal ‘04’ is equivalent to ‘CALL 30CA’ and leads to the top two
values on the calculator stack being replaced with a single value
that is their product. Therefore ‘04’ is the literal controlling
‘multiplication’.

and; literal ‘17" is equivalent to ‘CALL 359C’ and deals with the opera-
tion of string concatenation (i.e. A$+B$).

These ‘literals’ are included in a machine code routine as bytes of data
(DEFB's — read as ‘defined bytes’) that follow the ‘RST 0028’ instruction.
The final DEFB is always ‘38’ which performs an ‘end-calc’ operation and
thereby acts as a ‘return’ from the CALCULATOR.

The following example shows the CALCULATOR being used — interest-
ingly in a recursive manner from within the CALCULATOR itself.

The ‘tan’ subroutine.

address machine code mnemonic comment

37DA EF RST 0028 Call the calculator; a value is
already on the calculator
stack, i.e. x .

37DB 31 DEFB +31 ‘duplicate’ — x,x

37DC 1F DEFB +1F ‘sin’ — X, sin x

140

37DD 01 DEFB +01 ‘exchange’ — sin x, x

37DE 20 DEFB +20 ‘cos’ —sin x, cos X
37DF 05 DEFB +05 ‘division” — tan x
37E0 38 DEFB +38 ‘end-calc” —tan x

37E1 C9 RET Now back to ordinary

machine code and the value
on the top of the calculator
stack has gone from

‘x’ to “tan x'.

The reason for the inclusion of this special system of using the instruction
‘RST 0028’ followed by ‘literals’ is that it shortens machine code routines.
The example above uses only eight locations whereas the use of five ‘CALL’
instructions and a single ‘JP’ instruction would use eighteen locations.

It is quite possible to use the CALCULATOR in a user-written machine
code program but care must be taken to ensure the calculator stack is kept
balanced.

The character set
There is an ‘unused area’ from location 386E — 3CFF that precedes the
‘character set’ that occupies locations 3D00 — 3FFF.

The character set consists of ninety six character forms with each form
using sixty four bits.

The following example shows one of the character forms.
address mnemonic comment
3D58 DEFB +00 ‘00000000
3D59 DEFB +00 ‘00000000
3D5A DEFB +08 ‘00001000
3D5B DEFB +08 ‘00001000
3D5C DEFB +3E V0111110
3D5D DEFB +08 ‘00001000
3D5E DEFB +08 ‘00001000
3D5F DEFB +00 ‘00000000

i.e. the character “+'.

A BASIC program that shows the binary forms is given next.
18 REM ““Large character printe
o
20 FOR A=15616 TO 16376 STEP 8
30 FOR B=0 TO 7: LET F=PEEK (A
+B): GO SUB 300: NEXT B
40 PRINT

50 PRINT TAB 2;"'"";CHR$ (32+(A

141

—15516)/8);"*"
60 INPUT AS
70 CLS
80 NEXT A
9¢ STOP
300 REM Binary of F
310 FOR N=7 TO 1 STEP —1
320 LET P=21N
330 PRINT CHR$ (48+INT (F/P));
340 LET F=F—INT (F/P)*P
350 NEXT N
360 PRINTINTF
370 RETURN

Line 6@ in the above program allows the user to step through the ninety
six character forms one by one.

7.3 The different parts of the monitor program.
The monitor program will now be discussed section by section in the order
in which they occur in the ROM.

0000 — 0007 ‘RST 0000’ The very start. Disable the maskable interrupt,
clear the A register, load the DE register pair with +FFFF — the top of RAM
and jump forward to 11CB.

0008 — 000F ‘RST 0008’ The error routine. The machine stack will be
cleared and the appropriate report given.

0010 — 0012 ‘RST 0010’ the PRINT—A entry point. Jump forward to
15F2.

0018 — 0024 ‘RST 0018" & ‘RST 0020‘. Fetch the current character
pointed to by CH—ADD, or the next one.

0028 — 0029 ‘RST 0028’ Jump forward to 335B which is the starting add-
ress of the CALCULATOR.

0030 — 0037 ‘RST 0030’ BC—SPACES. Jump forward to 169E to make
space in the ‘work space’.

0038 — 0052 The maskable interrupt routine. The real-time clock is
updated and the keyboard scanned by a call to 02BF.

0066 — 0072 The non-maskable interrupt routine that will cause a system
restart if location 5CBO holds zero.

0095 — 0204 The token table. The following BASIC program shows this
table.

142

10 REM Token table printer

20 FOR A=149TO 516

30 LET B=PEEK A

40 |IF B<128 THEN PRINT CHRS B;
:GOTO 69

5@ PRINT CHR$ (B—128)

60 NEXT A

0205 — 028D The key tables. There are six tables one for each of the
possible modes. The most important table is the first (0205 — 022B) that
holds the ASCII values for the capital letters and digits.

028E — 02BE The KEY—SCAN subroutine. A key-value is returned in the
DE register pair. The zero flag is reset if too many keys are pressed at the
same time. Normally the E register contains the key number — hex. 00—27,
and the D register indicates which shift key is being pressed, if any.

02BF — 03B4 The KEYBOARD subroutines. A set of subroutines that
handle the ‘repeat’ facility and decode the key-value to give the required
character code. If a key is pressed and is accepted then its code is copied to
the system variable LAST—K and bit 5 of FLAGS is set to indicate the
presence of a new code.
03B5 — 03F7 The BEEPER subroutine. On entry the HL register pairis
to hold the pitch of the required note and the DE register pair the duration.
The lowest pitch is given by HL holding +FFFF and the value is roughly
halved for each octave above this. The duration value is absolute and has
to be increased as the pitch value is decreased if a note is to have the same
overall duration.
03F8 — 046D The BEEP command routine. This routine makes extensive
use of the CALCULATOR to change the ‘duration’ and ‘pitch’ into the
appropriate values for the DE & HL register pairs. There is a table of twelve
floating-point numbers at 046E — 04A8 for deriving the correct semi-tone
values.
04AA — 04C1 In error these locations contain a subroutine applicable to
the ZX81.
04C2 — 09F3 The SAVE, LOAD, VERIFY & MERGE command routines.
The important parts of this section of the monitor program are:
04C2 — 053E The SAVE—BYTES subroutine. Pass ‘DE’ bytes, starting
at the location ‘(IX)’ to the cassette recorder together with the initial
marker byte and the trailing parity byte.

053F — 0555 The SAVE/LOAD end subroutine.

0556 — 0604 The LOAD—BYTES subroutine. LOAD or match ‘DE’ bytes
from the cassette player. Again the X register pair points to the first loca-

143

tion of the destination area. The carry flag is reset for verifying but set for
loading and merging.

The SAVE—BYTES & LOAD—-BYTES subroutines are used for both
the header part and the data part of the tape format.

0605 — 075F The entry point for all the subroutines is at 0605 and this
part is concerned with the construction of the ‘header’ details in the ‘work
space’ and is common to all four BASIC commands.

0760 — 096F This part deals with loading, verifying and merging. It
calls LOAD—BYTES as required.

0970 — 09A0 This part deals with saving and is quite straightforward.
The channel that allows printing in the lower screen is opened and the
‘start tape’ message is produced. There is then a ‘wait for a key to be
pressed’. After this the ‘header’ is sent out and then, after a delay of one
second the ‘data block’ is sent out.

09A1 — 09F3 The cassette messages.

09F4 — 0D4C The PRINT—QUTPUT routine. Bit 1 of FLAGS is set when
the printing is to appear on the printer but reset for the T.V. display.
The important parts of this section of the monitor program are:

09F4 — OAOE Character codes that are ‘printable’ are distinguished from
‘control’ characters. In either case the current print position is fetched —
see 0B03.

0A11 — 0A22 A look-up table for the ‘control’ characters i.e. characters
hex. 06—17.

0A23 — 0AD8 The various routines for dealing with the ‘control’ charac-
ters.

OADC — 0B02 The important STORE subroutine. The current print
position is saved in the appropriate system variables. The print position
may refer to the main part of the screen, the lower part of the screen or
the printer buffer.

0B03 — 0B23 The equally important FETCH subroutine.

0B24 — OBDA The PRINT—ANY character subroutine. This particular
subroutine forms the essential part of the character printing routine of
the SPECTRUM.

On entry the HL register pair holds the initial pixel address of where
the character is to be printed — DF—CC or equivalent, the BC register pair
holds the current line and column values — S—POSN or equivalent and the
A register holds the character code.

The base address of the character form is then found whether it is in
the character set, the UDG area or is a graphics character created in an Ad

144

Hoc manner in the calculator’s memory area.

P—FLAG is also analysed to see if the character is to be printed in
OVER and/or INVERSE modes.

Then, in the loop at 0BB7 — OBC4 the actual character form is copied
into the memory — either the display area or the printer buffer as is
required.

OBDB — 0C09 The attribute setting routine. After a character has been
printed on the T.V. display the attribute byte for the character area has to
be set. This involves fetching the former attribute value and the system
variables ATTR—T, MASK—T & P—FLAG. All these values are then mani-
pulated together and the resultant value stored as the new attribute value.

OCOA — 0C54 The message and token printing subroutines. The entry
point for message printing is 0COA and for token printing 0C10. In the
case of message printing the DE register pair has to point to the first loca-
tion of the table of messages (must hold a value greater than hex. 7F)
and the A register holds the number of the message to be printed —
starting at zero. All the characters of the message will be printed until an
‘inverted’ character is found.

In the case of token printing the instruction line at 0C10 loads the DE
register pair with the base address of the token table — 0095.

0C55 — 0D4C The SCROLL? subroutine. Whenever a character is printed
on the T.V. display the current print position to be used is tested to see if
the display should be scrolled. If it is then this routine is called to print the
prompt message and act accordingly upon the next keystroke.

0D4D — ODBA The ‘set temporary colours’ subroutine. This is an important
little subroutine that is called on many occasions.

If the main part of the display area is being used then the system variables
ATTR—P & MASK—P that hold the permanent colours are copied to
ATTR-T & MASK—T. The system variable P—FLAG has its odd bits — the
permanent bits, copied to its even bits — the temporary bits.

However, if the lower part of the display area is being used then the
system variable ATTR—T takes the value of BORDCR and MASK—T is given
the value zero. All of the temporary bits of P—FLAG are reset.

0D6B — OEAB The CLS command routine. The operation of clearing the
screen in the SPECTRUM involves setting all the locations of the display area
to hold zero and the locations of the attribute area to hold specified values.
The command routine makes use of the CL—LINE subroutine (OE44—
OE87) to clear the twenty four ‘lines’ of the display area. Scrolling the screen
involves the use of the CL—~SCROLL subroutine (0EQ0 — OEA43).

OEAC — OF2B The printer routines.

145

OEAC — OECC The COPY command routine. The dec. 176 pixel-lines are
passed directly to the printer.

OECD — OEF3 The COPY—BUFF subroutine. The printer buffer’s con-
tents are passed to the printer.

OEF4 — OF2B The PRINTER subroutine itself.

OF2C — 10A7 The EDITOR. This routine allows the user to build up a
BASIC line in the ‘editing area’. Following each keystroke that represents
a printable character or token a ‘beep’ is produced and the ADD—CHAR
subroutine (OF81 — OF91) adds the appropriate code to the edit-line.

The editing keys are dealt with in a separate manner. Locations OFAOQ —
OFAS8 holds a look-up table for the codes hex. 07 — OF, and the section from
OFA9 — 10A7 contains the various handling routines for these keys.

Note: The EDITOR is also called from the INPUT command routine and allows the user
to build up an INPUT-line in the work space.

10A8 — 111C The KEYBOARD—INPUT subroutine. This subroutine
collects the value from LAST—K as long as bit 5 of FLAGS shows it is a new
keystroke. A return is made with carry set and zero reset if the code is ‘print-
able’.

The setting of the CAPS LOCK flag is handled by the code in locations

10DD — 10ES5. Bit 3 of FLAGS 2 s complemented every time this section is

executed. :
The setting of MODE by the use of the GRAPHICS key and shift, or the

SYMBOL SHIFT key and shift, is handled in locations 10E9 — 10F3.
The section from 10FA — 1 11C is concerned with the setting of K—DATA
when a digit key has been pressed.
111D — 11B6 The ED—COPY subroutine. The edit-line or INPUT-line is
build up in the editing area or ‘work space’ and this subroutine is used when-
ever such a line is to be displayed on the T.V. screen.
11B7 — 11CA The NEW command routine. This command performs a
system restart operation but leaves RAMTOP, P—RAMT, RASP, PIP & UDG
unchanged. It continues into INITIALISATION.
11CB — 12A1 The INITIALISATION routine. On entry the value in the A
register will be zero for a full system restart but +FF for a NEW operation.
The parts of the INITIALISATION procedure will now be discussed.

11CC — 11CF The border of the T.V. display is made white.
11D0 — 11D9 The | register is set to hold +3F. This register is used in
the generation of the T.V. scan signals.

11DA — 11EF The RAM—CHECK routine. All the locations from RAM-
TOP down to location 4000 are tested. On leaving the routine the HL
register pair holds the address of the last location of the memory available.

146

11F0 — 11FF In the case of a NEW operation being performed this sec-
tion is used to restore the former values of P_RAMT, RASP, PIP & UDG.
When a system restart is being handled then this section is meaningless.

1200 — 1218 This part is used only when a system restart is being
followed. The user-defined graphics are set to A—U by copying their forms
from the character set to the UDG area. PIP, RASP and P-RAMT are
also initialised.

1219 — 1234 The system variable CHARS is initialised to +3C00 and

The machine stack organised. Interrupt mode 1 is selected, the 1Y register
pair set to 5C3A and the maskable interrupt enabled. From this point on
the keyboard will be scanned every 1/50th. of a second.

1235 — 1243 The initial channel information is copied to the channel
information area.

1244 — 127B A series of system variables are given initial values. For ex-
ample the permanent colour variables are set to give ‘black ink’, ‘white
paper’ and ‘white border’.

127C — 1285 The initial stream data is copied to the first fourteen lo-
cations of STRMS. This represents streams ‘—3’ to ‘+3’.

1286 — 12A1 The printer buffer is cleared, the screen is cleared and
finally the copyright message printed on the bottom line of the display.
12A2 — 15AE The MAIN EXECUTION routine. The various parts of this

important routine will now be discussed.

12A2 — 12E1 The main loop for building up and subsequently listing a
BASIC program made up of lines starting with line numbers. The syntax of
each line is checked and only if the syntax is correct will the line be copied

to the program area.

12E2 — 1302 A direct BASIC line, that has passed the syntax checking
tests, will be interpreted. A ‘return’ to 1303 is made upon completion of
the interpretation no matter what the reason.

1303 — 1390 The appropriate report is produced and the main execu-
tion loop entered again by jumping to 12AC.

1391 — 1554 The table of error messages. The SINCLAIR copyright mes-
sage is also in this table.

1355 — 15AE This final part of the MAIN EXECUTION routine is used
to copy a BASIC line from the ‘editing area’ to its appropriate place in the
program area. Any existing copy of a line with the same line number as the
new line is reclaimed.

15AF — 15C5 The initial channel data table.

147

15C6 — 16D2 The initial stream data table.

156D4 — 1651 The channel accessing routines. Entry to this set of routines
at 15D4 has the effect of ‘waiting for a key to be pressed ', i.e. a jump is made
repeatedly to the KEYBOARD—INPUT subroutine until the carry flag is set.
Entry at 15EF or 15F2 has the effect of ‘printing a character’. The output
channel is normally to PRINT—OUTPUT. The first entry point is used for
printing digits whereas the second entry point is used for single characters or

tokens.
1652 — 16E4 A collection of subroutines.

1652 — 16564 The ONE—SPACE subroutine. A single space is made in a
BASIC line either in the ‘editing area’ or the ‘work space’ as required.

1655 — 1663 The MAKE—ROOM subroutine. The current value of BC
shows how many spaces are to be made after the location currently add-
ressed by the HL register pair.

1664 — 168E The POINTERS subroutine. All the pointers from VARS
to STKEND are changed as required.

168F — 169D The collect line number subroutine. For a given adrress of
the start of a BASIC line the line number is collected in the DE register
pair.

169E — 16AF The RESERVE subroutine. The required number of loca-
tons is made available in the ‘work space’.

16B0 — 16D8 A set of ‘clearing’ routines. Entry at 16BO clears the edit-
line, the temporary ‘work space’ and the calculator stack. Entry at 16BF
clears the temporary ‘work space’ and the calculator stack. Whereas entry
at 16Cb clears the calculator stack only.

16DB — 16E5 The indexer subroutine used in several instances to ‘index’
into a table.

16E5 — 1792 The CLOSE and OPEN command routines. An open channel
will have a value that is other than zero in the appropriate STRMS location
for that channel.
e.g. PRINT PEEK 23584 is normally zero which means channel 5 is

closed.

But;

OPEN #5,”K": PRINT PEEK 23584 will give ‘1" and the channel

is now open.

CLOSE #5: PRINT PEEK 23584 will give zero.
The two command routines check that channels are being OPENed and
CLOSEd in the correct way.

1793 — 1794 In the standard SPECTRUM the use of the commands

148

FORMAT, MOVE, ERASE & CAT lead to the production of the error mes-
sage ‘invalid stream’.

1795 — 1A47 The LISTing routines. Entry at 1795 is used by the MAIN
EXECUTION routine to produce an automatic listing, entry at 17795 by LLIST
and entry at 17F9 by LIST itself.

The various subroutines in this section will now be discussed.

1855 — 18B5 The ‘print a BASIC line’ subroutine. This subroutine is
called repeatedly by the controlling routines so as to print each line of the
BASIC program. Initially the line number has to be printed. Then the line
cursor if it is required. The subroutine at 18C1 — 18EO is called to print
a flashing character as necessary for when a BASIC line in the editing area
a flashing character as necessary. Finally all the characters and tokens of the
line are printed.

196E — 197F The LINE—ADDR subroutine. This subroutine is used to
find the starting address of a given BASIC line in the program area.

19B8 — 19D4 The NEXT—ONE subroutine. The next BASIC line, or
variable, is found by using this subroutine.

19E5 — 19FA The ‘reclaiming’ subroutine. Any reclaiming that has to be
done is performed using this subroutine. First the pointers from VARS to
STKEND have to be adjusted then the data from the requisite location to
the end of the calculator stack is moved down.

1A1B — 1A47 The ‘number’ printing subroutines that are used to print
the line numbers of BASIC lines either in a listing or in a report.

1A48 — 1B16 The COMMAND TABLES. There are two tables. The firstis an
offset table that indexes into the ‘parameter’ table. The full ‘parameter table’
is given below.

The ‘parameter table’

command classes command routine
address command & separators address
1A7A LET 01=02 (2AFF)
1A7D GOTO 06 00 1E67
1A81 IF 06 THEN 05 1CFO
1A86 GO SUB 06 00 1EED
1A8A STOP 00 1CEE
1A8D RETURN 00 1F23
1A90 FOR 04 =06 TO 06 05 1D03
1A98 NEXT 04 00 1DAB
1A9C PRINT 05 1FCD
1A9F INPUT 05 2089
149

1AA2 DIM 05 2C02
1AAS REM 05 1BB2
1AA8 NEW 00 11B7
1AAB RUN 03 1EA1
1AAE LIST 05 17F9
1AB1 POKE 08 00 1E80
1ABb5 RANDOMIZE 03 1E4F
1AB8 CONTINUE 00 1E5F
1ABB CLEAR 03 1EAC
1ABE CLS 00 0D6B
1AC1 PLOT 09 00 22DC
1AC5 PAUSE 06 00 1F3A
1AC9 READ 05 1DED
1ACC DATA 05 1E27
1ACF RESTORE 03 1E42
1AD2 DRAW 09 05 2382
1AD6 COPY 00 OEAC
1AD9 LPRINT 05 1FC9
1ADC LLIST 05 17F5
1ADF SAVE 0B (0605)
1AEOQ LOAD 0B (0605)
1AE1 VERIFY 0B (0605)
1AE2 MERGE 0B (0605)
1AE3 BEEP 08 00 03F8
1AE7 CIRCLE 09 05 2320
1AEB INK 07 (1C96)
1AEC PAPER 07 (1C96)
1AED FLASH 07 (1C96)
1AEE BRIGHT 07 (1C96)
1AEF INVERSE 07 (1C96)
1AFO OVER 07 (1C96)
1AF1 ouT 08 00 1E7A
1AFb5 BORDER 06 00 2294
1AF9 DEF FN 05 1F60
1AFC OPEN # 06 , 0A 00 1736
1B02 CLOSE # 06 00 16E5
1B06 FORMAT 0A 00 1793
1BOA MOVE 0OA ,0A 00 1793
1B10 ERASE 0A 00 1793
1B14 CAT 00 1793

Note: Several of the command routine addresses are not to be found in the
table. These have been given in brackets.

150

1B17 — 1C00 The controlling routine of the BASIC interpreter. In the case
of the edit-line being checked for syntax errors the routine is entered at
location 1B17 and the following steps taken.

i. The syntax flag is reset — bit 7 of FLAGS.

ii. Any line number present is checked for legality — the subroutine ‘E—
LINE number’ at 19FB is used.

iii. The system variable that counts the statements in a line — SUBPPC, is
initialised to zero.

iv. The system variable ERR—NR is initialised to hex.FF.

Then the statement-loop at 1B28 — 1B3C is entered and the syntax for each
statement checked in turn. An indirect return via 1BB3 — 1BB6 is made if the
syntax is proved correct. If any one of the syntax tests is failed then the
return will be made via the appropriate error routine. Note that the error
number is entered into ERR—NR but is unavailable.

When a direct BASIC line is being interpreted the entry point is 1B8A.
The syntax flag — bit 7 of flags, will always be set. The statements of the line
are then dealt with in turn by the statement-loop. A striaghtforward ‘return’
is made if there are no further BASIC lines to be interpreted, However, in
the event of the direct BASIC line containing commands such as RUN, GO
TO, CONTINUE, or when appropriate RETURN or NEXT, there may be
further lines of BASIC to be interpreted before the ‘return’ is made upon
the end of the BASIC program being reached.

In all cases when the statement—Iloop is entered a statement is interpreted

in the following manner.

i. The BASIC command for that statement is identified and the requisite
adqress in the command table computed.

ii. The first command class routine as specified in the parameter table is
then executed.

iii. Further command class routines are executed, or characters matched
against specified ‘separators’, until the stage is reached when the com-
mand routine address is fetched and the routine executed.

iv. When the last statement in a line has been interpreted then the next line

is considered.

1C01 — 1COC The command class table. This is an offset table that is used
to find the base address of the various command class routines.

1COD — 1CDD The command class routines. The requirements specified by
the different command classes can be summarised as follows:

Class 00 — No further operands.

151

Class 01 — LET. A variable is required.

Class 02 — LET. An expression, numeric or string, to be given.

Class 03 — A numerical expression may be given. Zero to be used in case
of default.

Class 04 — A single character variable must follow.

Class 05 — A set of items may be given.

Class 06 — A numeric expression must follow.

Class 07 — Handles colour items.

Class 08 — Two numeric expressions, separated by a comma, must
follow.

Class 09 — As for class 8 but colour items may precede the expressions.

Class 0A — A string expression must follow.

Class OB — Handle cassette routines.

The command class routines are fairly complicated and will not be discussed
further. However locations 1TCAD — 1CBD which contains part of the com-
mand class 07 routine is of particular interest. These locations contain the
code that copies the ‘current temporary system variables’ to the correspond-
ing permanent ones and can be called whenever this needs to be done.

1CDE — 24FA The command routines.

The routines in this section of the monitor program are again fairly compli-
cated and will not be discussed further in detail. In chapter 8, however,
reference to the various ‘printing’ routines will be made as they can be called
from user-written programs.

24FB — 28B1 The' expression evaluator. This is a most interesting routine
in the SPECTRUM as the evaluation of functions that do not require argu-
ments are performed within the expression evaluator itself and not in the
expected manner of having separate subroutines. As a result of the use of
this method a programmer who wishes to use these function routines has to
resort to calling the expression evaluator from the ‘val/vals’ routine in the
CALCULATOR. (see chapter 8 for details).

There are two fundamental points to be made concerning the expression
evaluator. The first is that the purpose of the routine is to evaluate the ‘next
expression” and produce a single result. This result if numeric will be a five
byte floating-point number, however if the result is a string then a five byte
set of parameters will be produced. In either case the five bytes constitutes a
‘last value’ and is returned by the routine as the topmost value on the calcul-
ator stack. The calculator stack will always be increased be ‘one value’ when
the expression evaluator is used.

The second point to be made is that the expression evaluator uses preced-
ence values and an operation of a higher precedence will be performed before
an operation with a lower precedence. Operations with identical precedent

152

values will be performed in the order that they occur. In the SPECTRUM
system the precedent values for operations that are yet to be done are saved
on the machine stack and ‘part answers’ on the calculator stack. Also saved
on the machine stack are the ‘literals’ that determine which CALCULATOR
routine is to be used for the different operations.

The parts of the expression evaluator are:
24FB — 24FE The initial precedence marker — zero is saved on the
machine stack.

24FF — 2794 The main loop of the expression evaluator. A pass through
the loop is made for every item in the expression.

2530 — 2534 The SYNTAZ—-Z subroutine. When syntax is being tested
then the zero flag will be set.

2535 — 2567F The SCREENS routine.

2580 — 25695 The ATTR routine.

2596 — 256AE A look-up table for the functions that do not require
arguments.

25F8 — 2626 The RND routine.

2627 — 2634 The Pl routine.

2634 — 2667 The INKEYS routine.

2756 — 2758 The CALCULATOR is used to perform a specified oper-
ation on one or two operands as required.

2795 — 17AF A reference table used to convert arithmetic character
codes to calculator ‘literals’.

27B0 — 27BC The main precedence value table. (Priority table)

27BD — 28B1 The FN routine.

28B2 — 2995 The LOOK-VARS subroutine. This subroutine is called
whenever a search of the variable area is to be be made. For a specified vari-
able the address of the current value will be returned if that variable has
already been used, but if not then the appropriate flags will be set.

2996 — 2Ab1 The STK—VARS subroutine. A complicated subroutine that
is used when searching for simple string variables and array variables. The
parameters of the string or the array element required are returned on the
calculator stack.

2A52 — 2AB0 The SLICING subroutine. Any string can be sliced and this
subroutine is called whenever a ‘slice’ is specified.

2AB1 — 2ACB The STK—STORE subroutine. A very useful routine that
passes the current string parameters, in the A,B,C,D & E registers, to the

153

calculator stack. The stack is thereby extended by ‘one value’.

In a set of string parameters the BC register pair hold the length of the
string, the HL register pair the starting address of the string and the A register
is normally unused and set to zero. On occasions the A register holds ‘1’and
indicates elements of an array are being handled.
2AFF —2BFO The LET command routine. This is the actual assignment
routine for the LET and INPUT commands. In the case of a simple numeric
variable either the old value is overwritten or a new variable is constructed at
the end of the current variable area. In the case of a simple string variable any
old value will be reclaimed and a new variable constructed, once again at the
end of the variable area. Finally is an array variable is being handled then the
old entry will always be overwritten.

2BF1 — 2C01 The STK—FETCH subroutine. A call to this subroutine will
result in the topmost value on the calculator stack being loaded into the A,
B, C, D & E registers. The calculator stack is thereby reduced by ‘one value'.
In the SPECTRUM system the STK—STORE and the STK—FETCH sub-
routies are usually used to handle sets of string parameters however there is
no reason why five byte floating-point numbers should not be handled. (But
use the entry point 2AB2 for STK—STORE otherwise the fifth byte will
be lost.)

2C02 — 2C87 The DIM command routine. A straightforward routine that
sets up an array as specified. If a given array already exists then the old
array will be reclaimed before the new array is constructed at the end of
the variable area.

2C88 — 2F9A Miscellaneous arithmetic routines. The most important of
these routines are:

2D22 — 2D27 The STK—DIGIT subroutine. A valid ASCII digit code —
hex. 30—39, will be passed to the calculator stack as a floating-point
number.

2D28 — 2D2A The STACK—A subroutine. The value held in the A regis-
ter is passed to the calculator stack.

2D2B — 2D3A The STACK—BC subroutine. The value currently in the
BC register pair is passed to the calculator stack.

Interestingly it is this subroutine that is used as the ‘exiting’ routine
from a USR function. Hence the current value in the BC register pair
becomes the ‘last value’ of the expression — ‘USR number’, and is re-
turned. Note especially the 1Y register pair is re-initialised to +6C3A and
therefore will always be correct upon returning from a USR function call.
In a user-written machine code program care must be taken if the 1Y
register pair holds a modified value and the STACK—BC (or STACK—A &

154

STK—DIGIT) subroutine is being used.

2DA2 — 2DCO The FP—TO—BC subroutine. The topmost value on the
calculator stack is compressed into the BC register pair.

2DD5 — 2DE2 The FP—TO—A subroutine. The topmost value is com-
pressed into the A register.

2DE3 — 2F9A The PRINT—FP subroutine. A long and very complicated
subroutine that ‘fetches’ the topmost value off the calculator stack (there-
by reducing it by ‘one value’) and prints the required number in either full
decimal or E format. This subroutine will print a number for any five byte
value irrespective of whether or not the value is genuinely numeric. (String
values often give very strange numbers indeed!)
In performing its work this subroutine makes use of an Ad Hoc print
buffer in the ten locations of MEM—3 & MEM—4 (system variables 5CA1
— BCAA). Note: See appendix iv — the STR® error.
2F9B — 386D The CALCULATOR subroutine. The various parts of this
important subroutine will be discussed in turn.

2F9B — 300E A set of miscellaneous arithmetic subroutines.

300F — 3013 ‘Literal 03 — ‘subtract’. The first of the four main
arithmetic routines.

In the subtraction routine the operation is performed between the top
two values on the calculator stack. The topmost value being subtracted
from the value underneath. The result will always be a single value and is
the topmost value on the calculator stack. The stack is thereby reduced in
size by ‘one value’.

Subtraction is considered as the ‘addition of a negated subtrahend’.
i.e. a— b is taken as at+ (—b).

3014 — 30A8 ‘Literal OF' — ‘addition’. The two values at the top of
the calculator stack are added together and replaced by the single result.

30CA — 31AE ‘Literal 05’ — ‘multiply’. The two values at the top of the
calculator stack are multiplied together.

31AF — 2313 ‘Literal 05’ — ‘division’. The two values at the top of the
calculator stack are divided — the top value into the value underneath.

32C5 — 32D6 The calculator’s table of constants. Five values are to be

found in this table. The values are stored in a compressed form. The values
are:

Zero, one, a half, a half of Pl & ten.

These constants are available for use and the ‘literals AO — A5’ will make
the required constant the top Value on the calculator stack. The stack
thereby increases by ‘one value’.

155

32D7 — 335A The calculator’s table of addresses. This table contains the
addresses of the sixty six routines that are called by using the calculator’s
‘literals’. The information held in the tabie is shown below.

‘literal’ address name ‘literal’ address name

00 368F jump-true 21 37DA tan

01 343C exchange 22 3833 asn

02 33A1 delete 23 3843 acs

03 300F subtract 24 37E2 atn

04 30CA multiply 25 3713 In

05 31AF division 26 36C4 exp

06 3851 to-power 27 36AF int

07 351B or 28 384A sqr

08 3524 no-&-no 29 3492 sgn

09 353B no-l-eq 2A 346A abs

0A 353B no-gr-eq 2B 34AC peek

0B 353B nos-neg| 2C 34A5 in

oc 363B no-gtr 2D 34B3 usr-no
oD 353B no-less 2E 361F strs

OE 353B nos-eql 2F 35C9 chrs

OF 3014 addition 30 3501 not

10 352D str-&-no 31 33C0 duplicate
11 353B str-l-eq 32 36A0 n-mod-m
12 353B str-gr-eq 33 3686 jump

13 353B strs-neq| 34 33C6 stk-data
14 3538 str-gtr 35 367A dec-jr-nz
15 353B str-less 36 3506 less-0

16 3563B str-gtr 37 34F9 greater-0
17 359C strs-add 38 369B end-calc
18 35DE vals 39 3783 get-argt
19 34BC usr-s 3A 3214 truncate
1A 3645 read-in 3B 33A2 fp-calc-2
1B 346E negate 3C 2D4F e-to-fp
1C 3669 code 3D 3297 restack
1D 35DE val 86 etc 3449 series-06 etc
1E 3674 len AOQ etc 341B constants
1F 37B5 sin CO etc 342D st-mem-0 etc.
20 37AA cos EO etc 340F get-mem-0 etc.

335B — 33A1 The controlling routine of the calculator.

33A2 — 33A8 ‘Literal 3B — ‘fp-calc-2’. This is an important subroutine
as it is used by the expression evaluator to perform arithmetic operations.
In order to use this subroutine the ‘literal” of the arithmetic operation

156

must be held in the B register before the ‘RST 0028’ instruction is used.

35DE — 361E ‘Literal ID-val’. In general the subroutines in the calculator
are rather complicated and beyond the scope of this book. However this
particular subroutine is worth considering in some detail.
detail.
The steps are:
— The parameters of the string are fetched off the calculator stack.
— Sufficient room is made in the ‘work space’ for the string; and a
carriage return character.
— The string is copied into the ‘work space’ and a carriage return
character is added.
— Bit 7 of FLAGS is reset-(the syntax flag) and the expression
evaluator called.
— Then, as long as the expression was numeric the syntax flag will be
set (execution) and the expression evaluator called a second time.
— The ‘last value’ on the calculator stack is then the required result.

36AF — 386D The ‘function’ subroutines. In the SPECTRUM system
Chebyshev polynomials are used as required to evaluate the functions EXP,

LN, SIN & ATN.
The tables of constants for these subroutines are to be found at:
36D6 — 36F6 — EXP — 8 constants.
3752 — 377E - LN — 12 constants.
37BF — 37D6 — SIN — 6 constants.
3803 — 382E — ATN — 12 constants.

These constants are stored in the compressed form and can be expanded
by using the ‘stk—data’ subroutine. (Load the DE register with a des-
tination address, the H’L’ register pair with the base address of the con-
stant and use ‘CALL 33C6’).

The compressed form will now be explained:

i. The first byte is divided by hex. 40 and the exponent will be—
— when there is a remainder.
The remainder + hex. 50
— when there is no remainder.
The second byte + hex. 50

ii. The quotient, which will be 0, 1, 2 or 3, shows how many further bytes
are being specified. In all cases the number of bytes is the quotient
g

As the mantissa is to have four bytes any unspecified bytes are set to zero.
The following examples (taken from the table of constants) illustrate

the method used in the SPECTRUM.

157

Zero — compressed form 00 BO 00.

— The byte ‘00’ is divided by ‘40’. There is no remainder so
the exponent is ‘BO+50’ which is ‘00’ and the mantissa is
the third byte — ‘00’ and three unspecified bytes.

i.e. 00 00 00 00 00

One — compressed form 40 BO 00 01.
As above the exponent will be ‘00’. The quotient is ‘1’
so two further bytes are specified and the result is:
0000010000
the integral form for one.

A half — compressed form 30 00.
expanded form 80 00 00 00 00.
P1/2 — compressed form F149 OF DA A2
expanded form 8149 OF DA A2
Ten — compressed form 40 BO 00 OA
expanded form 00 00 0A 00 00

Using the compressed form as outlined any five byte number can be passed
to the calculator stack. The bytes of the compressed form are put after
the ‘literal 34’ — stk-data.

i.e. To make the value ten the ‘last value’ on the calculator stack use:

RST 0028 : Use the calculator.

34 : Use ‘stk-data’.

40 BO 00 0A : The compressed form.
38 : Use ‘end-calc’.

‘Literal 3D — ‘restack’ is also worth considering at this point. This subrou-
tine changes a ‘last value’ that is in its integral form to the full floating-
point form.

i.e. For the value ten.

00 00 OA 00 00 will be changed to 84 20 00 00 00

The subroutine has no effect on values that are already in floating-point
form.

386E — 3CFF The character set. (see page 141 for details)

158

8. UNDERSTANDING — Using the monitor program’s
subroutines.

8.1 Introduction

The aim of this chapter is to show that machine code routines can be written
for the SPECTRUM in a relatively easy manner by making use of the large
number of subroutines that are always available in the monitor program.

In many ways the technique is based on BASIC as the appropriate machine
code routines are developed to replace simple BASIC statements. These rou-
tines can then be called with a ‘USR number’ function. A larger machine code
routine can be formed by ‘joining a series of small machine code routines
together’.

The author does not wish to discuss ‘structured programming’ in this book
but would like to make the point that a successful program, whether in
BASIC or machine code, will normally be constructed from a series of well
defined ‘tasks’. Each task having certain ‘entry conditions’ and producing a
‘result’.

8.2 Hex. input

In chapter 6 a ‘Hex. loader’ program was given so that the reader could
prepare a machine code routine in a DATA list and subsequently execute it.
However the ‘Hex. loader’ is not really suitable for larger routines and the
following program is preferable.
10 LET D=32000: REM Hex input
20 DEF FN A(A$,B)=CODE A%(B)—4
8-7*(CODE A$(B)>57)
30 DEF FN C(A%)=16"FN A (A$,1)+
FN A(A8,2)
40 DEF FN G$(F)=CHRS (+48+7"(
F>9))
5@ DEF FN H3(E)=FN G8(INT (E/1
6))+FN G$(E—16*INT (E/16))
60 DIM A%(2)
70 PRINT FN H3(PEEK D);TAB 7;F
N HS(INT (D/256));FN H$(D—256* IN
T (D/256));
80 INPUT A3
90 LET L=1
100 IF A3(1)="U" THEN LET L=-1:
GO TO 130
110 IF A$(1)="*" THEN GO TO 160
120 IF A%(1)<>CHR$ 32 THEN POKE

159

D,FN C(AS)
130 PRINT TAB 16;FN H3(PEEK D)
140 LET D=D+L
150 GO TO 70
160 INPUT ““Press any key to run
the routine’’;A$
170 RANDOMIZE 32000

Notes: Use with CAPS LOCK SET.
— Enter a value as a pair of hexadecimal characters.
— Use ENTER by itself to step forward.
— Use “U’" and ENTER to step backwards.
— Use “*” and ENTER to ‘run the routine’.
— Line 160 gives the user a second chance!

By using the above program the reader will be able to enter, and check, a
machine code routine fairly easily. The reader is well advised to SAVE the
program before using it the first time as ‘crashing’ the system will occur
often.

The reader is welcome to change the above program to suit any particular
wish; e.g. hexadecimal characters in ‘lower case’, etc.

8.3 The BEEP command

In BASIC the BEEP command has the form:

BEEP duration, pitch
where the ‘duration” must be a positive value not exceeding ten and the
‘pitch’ a positive or negative number denoting how far the note is from
middle C.

In a machine code routine there are two distinct ways in which a ‘beep’
can be produced. The first is to call the BEEPER subroutine with the appro-
priate values in the DE & HL register pairs; whilst the second way is to call
the BEEP command routine with the values for the ‘duration’ and ‘pitch’ on
the calculator stack.

Both these methods will now be illustrated.

Method i.

Using the ‘Hex input’ program given above enter:

address machine code mnemonic comment

7D00 11 0501 LD DE,+0105 A duration of ‘1 second".
7D03 21 66 06 LD HL,+0666 A pitch of ‘middle C'.
7D06 CD B503 CALL BEEPER Turn on the beeper.
7D09 C9 RET ‘Return to BASIC'.

When the above routine is executed it will produce the same effect as ‘BEEP

1,0".
160

The values of DE & HL are found as follows:
— Consider a note of a given frequency ‘f'.
e.g. Middle C taken as 261.63 Hz. in the SPECTRUM.
— Then the duration required for a period ‘t" is simply ‘fxt’. This goes
in the DE register pair.
— The value for the HL register pair is given by:

437,500/f — 30.125
Note that there is no 10 second limitation on the duration when this method

is used.

Method ii.

Use the ‘Hex input’ program given above to enter:

address machine code mnemonic comment

7D00 3E 01 LD A,+01 Duration of ‘1" second.
7D02 CD 28 2D CALL STACK—A Pass to calculator stack.
7D05 3E 00 LD A,+00 Pitch ‘@'.

7D07 CD 28 2D CALL STACK—A Pass to calculator stack.
7D0A CD F803 CALL BEEP Turn on the beeper.
7D0OD Cc9 RET ‘Return to BASIC'.

Again when this routine is executed the effect will be the same as ‘BEEP
1,0°.
It is possible to use ‘STACK—A' for integer values but ‘stk-data’ should be
used for other values.
i.e. for ‘BEEP 1.3,—1.12" it will be:

address amchine code mnemonic comment

7D00 EF RST 0028 Use the CALCULATOR.
7D01 34 DEFB +34 ‘stk-data’.

7D02 F1 DEFB Exponent ‘81",

7D03 26 66 66 66 DEFBs Mantissa. (= dec. 1.3)
7D07 34 DEFB +34 ‘stk-data’.

7D08 F1 DEFB Exponent ‘81",

7D09 8F 5C28F6 DEFBs Mantissa. (= dec. —1.12)
7D0OD 38 DEFB +38 ‘end-calc’.

7DOE CD F803 CALL BEEP Turn on the beeper.
7D11 Cco RET ‘Return to BASIC'.

To produce a series of ‘beeps’ the values can be held in a table and collected
as required.

8.4 SAVEing and LOADing

The SAVE—-BYTES and LOAD—-BYTES subroutines can be called from
machine code in a straightforward manner.
In either case the 1X register pair must hold the ‘destination address’ and

161

the DE register pair the ‘byte count’.
e.g. to handle the bytes from 7EQ0 to 7EFF inclusively 1X would hold
7E00 and DE would hold 0100.
The A register must be set to hold +FF to show that a block of data is being
moved.
Finally, when LOADing the carry flag must be set.
The following routine will SAVE bytes.
address machine code mnemonic comment
7D00 3E FF LD A,+FF Signify a data block.
7D02 DD21007E LD IX+START Set the IX register pair.
7D06 110001 LD DE,+COUNT Set the DE register pair.
7D09 CD C204 CALL SAVE—BYTES Perform the SAVEing.
7D0C C9 RET ‘Return to BASIC'.

Note that the bytes are SAVEd without a ‘header’ and will only LOAD if
the byte count is known.
The LOADing routine is:

address machine code mnemcnic comment

7D00 37 SCF Set the carry flag. It would
be reset for VERIFY.

7D01 3E FF LD A +FF Signify a data block.

7D03 DD21007E LD IX+START Set the IX register pair.
7D07 110001 LD DE,+ COUNT Set the DE register pair.
7D0A CD 56 05 CALL LOAD—BYTES Perform the LOADing.
7D0D C9 RET ‘Return to BASIC'.

8.5 The ‘colour items’

In the SPECTRUM system all of the attribute bytes have the following form:

Bit 7 — set for FLASH.
Bit 6 — set for BRIGHT.
Bits 5—3 — PAPER colour.
Bits2—0 — INK colour.

This form applies to the 768 bytes in the attribute area and the system vari-
ables BORDER, ATTR—P, ATTR—T, MASK—P & MASK—T.

In addition to the attribute bytes the system variable P—FLAG is used to
hold the permanent and temporary flags for PAPER 9, INK 9, INVERSE &
OVER. The even numbered bits of P-FLAG — bits 6, 4, 2 & 0, are the
temporary flags and the odd numbered bits — 7, 5, 3 & 1, are the permanent
flags.

In most instances the SPECTRUM uses the temporary values when decid-
ing the value for a location in the attribute area but on certain occasions,
most importantly when following the CLS routines, the permanent values are
used.

162

The BORDER command and the six ‘colour items’ will now be considered
in turn.

BORDER:
At any time the colour of the border can be changed by use of an ‘OUT
(+FE),A’ instruction. But this operation is normally coupled with the saving
of the new colour value in bits 5—3 of BORDCR. Note that the other bits
of BORDCR control the FLASHing, BRIGHTness and INK colour of the
lower part of the display.

The following routine shows how the border colour can be changed and
BORDCR set to store this new value.

BORD—2 equ. 7DOD

address machine code mnemonic comment

7D00 3E 02 LD A,’RED’ A red border.

7D02 D3 FE OUT (+FE) A Effect the change.

7D04 07 RLCA The colour of the

7D05 07 RLCA border is moved

7D06 07 RLCA to bits 5—3 of the A register.
7D07 CB 6F BIT5,A The INK colour for the lower
7D09 20 02 JR NZ,BORD-—2 screen is to contrast.

7D0B EE 07 XO0R +07 White INK.

7D0OD 32485C LD (BORDCR),A Set BORDCR.

7D10 C9 RET ‘Return to BASIC'.

Or more simply:

7D00 3E 02 LD A,'RED’ A red border.

7D02 CD 9B 22 CALL BORD-1 Set the border as directed.
7D05 C9 RET ‘Return to BASIC'.

It is interesting to see how in the above routine the INK colour is made to
contrast with the border colour.

PAPER:

The permanent PAPER colour is given by bits 5—3 of ATTR—P. The follow-
ing routine shows for PAPER @ — PAPER 7 just one way in which these
bits can be changed without altering the other attribute values.

address machine code mnemonic comment

7D00 3A 8D 5C LD A,(ATTR—P) Fetch ATTR—P.
7D03 OF RRCA Move bits 5—3

7D04 OF RRCA to bits 2—0.

7D05 OF RRCA

7D06 E6 F8 AND,+F8 Discard the old colour.
7D08 C6 02 ADD A,+RED Enter the new colour.
7D0A 07 RLCA Rotate the

163

7D0B 07 RLCA byte three times

7D0C 07 RLCA to the left.
7D0D 328D 5C LD (ATTR-P), A Restore ATTR—P.
7D10 c9o RET ‘Return to BASIC'.

The above method is not very efficient but it is a ‘general method’ that can be
used in other situations.

PAPER 8 is handled separately and involves the setting of bits 5—3 of
MASK—P. Whilst PAPER 9 involves the setting of bit 7 of P—FLAG.

INK:

The permanent INK colour is given by bits 2—0 of ATTR—P. The following
routine shows how these bits can be changed for INK @ — INK 7.

address machine code mnemonic comment

7D00 3E F8 LD A,tF8 Prepare the mask.

7D02 FD A6 53 AND (ATTR-P) Fetch bits 7—3 of ATTR—P.
7D05 C6 02 ADD A,+RED The INK is red.

7D07 328D 5C LD (ATTR—P),A Restore ATTR—P.

7D0A Cc9 RET ‘Return to BASIC'.

Note how ATTR—P is on one occasion considered as being in location ‘I Y+53’
and then in location ‘6C8D".

INK 8 involves the setting of bits 2—0 of MASK—P. Whilst INK 9 involves
the setting of bit 5 of P—FLAG.

FLASH:

The three states of FLASH can be programmed as follows:
FLASH @ — reset bit 7 of ATTR—P — ‘RES 7,(ATTR—P)’
FLASH 1 —set bit 7 of ATTR—P — 'SET 7,(ATTR—P)’
FLASH 8 — set bit 7 of MASK—P — ‘SET 7,(MASK—P)’

BRIGHT:

Similarly the three states of BRIGHT:
BRIGHT @ — reset bit 6 of ATTR—P — ‘RES 6,(ATTR—P)’
BRIGHT 1 —set bit 6 of ATTR—P — ‘SET 6,(ATTR—P)’
BRIGHT 8 — set bit 6 of MASK—P — 'SET 6,(MASK—P)’

In all cases when mode ‘8’ requires cancelling the appropriate bits of MASK—
P will have to be reset again.

OVER:

The two states of OVER can be specified by:
OVER 1 —set bit 1 of P—FLAG — 'SET 1,(P—FLAG)’
OVER @ — reset bit 1 of P-FLAG — 'RES 1,(P—FLAG)’

164

INVERSE:

The two states of INVERSE can be specified by:
INVERSE 1 — set bit 3 or P-FLAG — ‘SET 3,(P—FLAG)’
INVERSE @ — reset bit 3 of P—FLAG — ‘RES 3,(P—FLAG)’

Permanent v. Temporary:
As mentioned above most of the operations in the SPECTRUM use the
temporary values; e.g. the ‘RST 0010 operation. The CLS routine being the
most important routine to use the permanent colours.
In order to copy the current permanent values to the temporary system

variables use:

CALL TEMPS — ‘CALL 0D4D’
and if the temporary values are to be used as the new permanent values use:

CALL PERMS — ‘CALL 1CAD’
The reader might like at this stage to write machine code routines that are
equivalent to:

PAPER 4: INK 3: BEEP 2,0
or: BEEP 1,0: BORDER 5: BEEP 2,12: BORDER 2

’

8.6 The CLS command and scrolling

One of the great advantages of using machine code instead of BASIC is that
the user is not limited to using only the BASIC commands. In the SPEC-
TRUM monitor program there are subroutines for clearing a part of the dis-
play area and for scrolling a part of it. These subroutines can only be used
from a machine code routine.

CLS:
The complete operation of clearing the screen and setting all the attribute
bytes to the ‘permanent’ values is obtained by using:

CALL CLS — ‘CALL 0D6B’
but it is important to ensure that channel ‘S’ is open before the subroutine is
called. The channel will need re-opening afterwards if further printing is to be
done. The following routine does indeed clear the whole screen.

address machine code mnemonic comment

7D00 3E 02 LD A,+02 Open channel ‘S".
7D02 CD 0116 CALL CHAN—OPEN

7D05 CD 6B 0D CALLCLS Now clear the screen.
7D08 c9 RET ‘Return to BASIC'.

The above routine does work well and does have the advantage of using the
permanent colours however it is probably simpler in many instances to use
the CL—LINE subroutine.

165

CL—LINE subroutine:
This subroutine can be used to clear a specified number of lines of the screen
display. The lines are counted from the bottom. Once again the permanent
values are used when setting the attribute bytes. '
Before a call is made to the routine the B register must hold a value in the
range hex. 01-18; where hex.18 would mean the whole of the screen is to be
cleared.
The following routine shows this subroutine being used:

address machine code mnemonic comment

7D00 06 17 LD B,+17 Clear dec. 23 lines

7D02 = CD 44 OE CALL CL—-LINE leaving only the top one.
7D05 Cc9 RET ‘Return to BASIC'.
CL—SCROLL:

This is an interesting subroutine as it enables the user to scroll a specified
number of lines of the display. The subroutine ends by using CL—LINE to
clear the bottom line and hence the attribute bytes for this line are given
‘permanent’ values.

The B register is again used to hold the value that specifies the number of
lines to be handled but in this instance it is the ‘actual number of lines —1’.
i.e. the hex. range is 01—17. (A minimum number of two is required as the
number of lines to be scrolled.)

The following routine shows this subroutine being used:

address machine code mnemonic comment

7D00 3E 16 LD A, +16 Leave only the top line
7D02 CD 00 OE CALL CL—SCROLLunscrolled.

7D05 C9 RET ‘Return to BASIC'.

Note that neither the CL—LINE subroutine nor the CL—SCROLL subroutine
affect the current channel usage.

8.7 The printing subroutines
In order to use any of the printing subroutines to display characters the
PRINT—OUTPUT subroutine must be made the current output routine. This
can readily be achieved by opening channel ‘S’. Therefore the instruction
lines:

LD A,+02

CALL CHAN—OPEN
must be used before using any of the other subroutines.

‘RST 0010°:
In the SPECTRUM system all printing of characters to the screen is per-
formed using this instruction. With channel ‘S’ open it has the effect of

166

using the PRINT—OUTPUT routine at 09F4 as the output routine.

The ‘RST 0010’ instruction is very powerful and can be used for the print-
ing of any character, the changing of the current print position by the use of
AT and TAB, the printing of expanded tokens and the temporary ‘colour
items’.

The following routine shows these uses:

address machine code mnemonic comment

7D00 3E 02 LD A,+02 Open channel ‘S’.

7D02 CDO0116 CALL CHAN—-OPEN

7D05 06 18 LD B,+18 Clear the whole

7D07 CD 44 OE CALL CL—LINE display area.

7D0A 3E 16 LD A, +¥AT’

7D0C D7 RST 0010 In effect

7D0D 3E 05 LD A,+05 PRINT AT 5,0;

7DOF D7 RST 0010

7D10 3E 00 LD A,+00

7D12 D7 rRsT OO0 __

7D13 3E 41 LD A/A’ In effect

7D15 D7 RST 0010 PRINT “A";

7D16 3EOD LD A,Cr’ In effect

7D18 D7 RST 0010 PRINT

7D19 3E F9 LD A,+F9 In effect

7D1B D7 RST 0010 PRINT CHR$ 249;

7D1C 3EOD LD A,Cr' In effect

7D1E D7 RST 0010 PRINT

7D1F 3E 11 LD A,PAPER’ In effect

7021 D7 RST 0010 PAPER 2;

7D22 3E 02 LD A,RED’ (it is temporary)

7D24 D7 RST 0010

7D25 3E 06 LD A/ In effect

7D27 D7 RST 0010 PRINT,

7D28 3E 42 LD A,B’ In effect

7D2A D7 RST 0010 PRINT “B";

7D2B Cc9 RET ‘Return to BASIC’
167

Note that in the above routine that a call to CL—LINE is made to clear the
screen and that this does not set the print position to ‘9,0’ (whereas CALL
CLS would).

When using a ‘RST 0010’ instruction to ‘print’ a ‘colour item’ then two
separate calls are required and when usinga ‘AT’ or ‘TAB’ control character
then three separate calls are required.

An alternative method of altering the print position is as follows;

— Load the BC register pair with the appropriate values for the new
print position.

— CALL CL—SET & ‘CALL 0ODDY’; which enters the required values
into S—POSN & DF—CC.

The values for the BC register pair for a position ‘AT a,b;” are the B register
holds hex. 18—a and the C register hex. 21—b.

e.g. ‘PRINT AT 5,8;" requires:
‘LD BC,+1321’
‘CALL ODDY9’

Printing strings:
In the SPECTRUM strings of characters are always considered by having the
DE register pair holding the address of the location containing the first char-
acter of the string and the BC pair holding a value equal to the number of
characters in the string.

In the PRINT command routine the PR—STRING subroutine is used to
print any string. The details of this subroutine are:

PR—STRING equ. 203C

PR—STRING LD AB : Fetch the ‘high’ count.
OR C : OR with the ‘low’ count.
DEC BC : Decrease the count.
RET Z : Return if count was zero.
LD A,(DE) : Fetch the character.
INC DE : Move on a character.
RST 0010 : Print the character.

] JR PR—-STRING : Back for another?
Any string of characters can therefore be printed by:

— Load the start address into DE.
— Load the length into BC.
— CALLPR—-STRING — ‘CALL 203C'.

As the PR—STRING subroutine uses the ‘RST 0010’ instruction to actually
print the characters a string may contain character codes, ‘colour items’,
print position controllers and token codes.

As an example of the use of the PR—STRING subroutine try entering the
following routine.

168

address machine code mnemonic comment

7CFO 11011009 A string of

7CF4 16 0A 05 53 hex. OF length and
7CF8 706563 74 starting at 7CFO

7CFC 72 756D

7D00 3E 02 LD A,+02 Open channel ‘S’.

7D02 CD 0116 CALL CHAN—OPEN

7D05 06 18 LD B,+18 Clear the whole screen.
7D07 CD 44 OE CALL CL—LINE

7D0A 11 FO7C LD DE,+string The start of the string.
7D0OD 01 0OF 00 LD BC,Hength The length of the string.
7D10 CD 3C 20 CALL PR—STRING Now print the string.
7D13 Cc9 RET ‘Return to BASIC'.

The above routine is similar in effect to:
CLS: PRINT PAPER 1; INK 9; AT 10,5; “Spectrum”’

Printing numbers:
The very powerful PRINT—FP subroutine is used to print the decimal form
of any five byte floating-point number. This subroutine takes as its operand
the topmost entry on the calculator stack. Note that when this subroutine is
used the actual number is removed from the stack and lost.

The following routines uses the PRINT—FP subroutine to print the con-
stant ‘P1/2’ from the calculator's table of constants.

address machine code mnemonic comment

7D00 3E 02 LD A,+02 Open channel ‘S’.

7D02 CD 0116 CALL CHAN—OPEN

7D05 CD 6B 0D CALLCLS Clear the whole screen.

7D08 3E 02 LD A,+02 Re-open channel ‘S’.

7D0A CD 0116 CALL CHAN—-OPEN

7D0D EF RST 0028 Use the CALCULATOR.

7D0OE A3 DEFB +A3 Get the fourth constant.

7DOF 38 DEFB +38 ‘end-calc’.

7D10 CD E3 2D CALL PRINT—FP Print the topmost entry
in decimal format.

7D13 C9 RET ‘Return to BASIC'.

The use of the line:

RANDOMIZE USR 32000: PRINT ‘P1/2 shows identical numbers. But
it is interesting to consider the point that in obtaining ‘P1/2, the constant
also ‘P1/2' was collected from the table of constants, doubled and then divi-
ded by two to finally give the result.

169

On many occasions however the use of the complete floating-point facility
may not be required and it is indeed possible to print integers in the range
dec. 0—9,999 by using the OUT—NUM subroutines that are normally used for
producing the line numbers in a listing or report. When using OUT—NUM-1
(1A1B) the number has to be present in the BC register pair in the normal
‘high-low’ order. But when OUT—NUM—2 (1A28) is used the HL register
pair is used to indirectly address the number that this time must be in ‘low-
high’ order. Note that with this subroutine leading spaces are printed and this
can be quite useful.

Care must be taken if these subroutines are used with numbers that might
exceed the limit of dec. 9,999.

The following example shows the OUT—NUM—1 subroutine being used to
print a number.

address machine code mnemonic comment

2B00 = As given on page 169.

7D0C

7D0D 010F 27 LD BC+270F Decimal 9,999
7D10 CD 1B 1A CALL OUT—NUM-—1 Print the number.
7D13 C9 ' RET ‘Return to BASIC'.

This completes the section on the printing subroutines and the reader is ad-
vised to try writing some longer machine code routines at this stage before
considering the more special commands discussed in the next section.

8.8 PLOT, DRAW and CIRCLE

These three commands all deal with ‘pixels’ in the display area. The number
of pixels that may readily be used is dec. 266176 and represent the upper
twenty two lines of the screen. The coordinates of the bottom lefthand pixel
is taken as ‘0,0’ and for the top righthand pixel they are ‘255,175".

The system variables COORDS—x and COORDS—y hold the coordinates
of the last pixel to have been used. These system variables are reset to ‘9,3’ by
the CLS command, or other commands such as RUN that do call the CLS
command routine.

Note that in BASIC the three commands are normally used with ‘FLASH 8;
BRIGHT 8; PAPER 8. i.e. MASK-T holding hex. F8.

PLOT:

This is by far the simplest of the three commands as it involves the identifi-
cation of only a single bit in the display area and its subsequent setting or
resetting.

There are three quite suitable entry points into the command routine but
the third one is perhaps the easiest one to use.

i. CALL PLOT — ‘CALL 22DC'. The entry requirements for entry to the
PLOT command routine are to have the ‘x’ and the ‘y’ values on the top
of the calculator stack. The ‘x’ value being underneath the ‘y’ value. The

170

use of STACK—A to place the values on thestack, in turn, is quite
sensible.

ii. CALL PLOT—1 — ‘CALL 22DF’'. Entry at this point requires that the
B register holds the ‘y’ value and the C register the ‘x’ value. After the
pixel has been plotted the permanent colour values are copied auto-
matically to the temporary system variables.

iii. CALL PLOT—BC — ‘CALL 22E5’. Again the B register is to hold the ‘y’
value and the C register the ‘x’ value. This subroutine performs the actual
PLOTting operation. The required bit is identified by calling PIXEL—
ADD (22AA) and will then be set or reset according to the result of
considering its present state and the value of P—FLAG. (Bit 0 of P-FLAG
giving the present state of OVER and bit 2 the state of INVERSE.)

The following routine shows a single pixel being PLOTted.

address machine code mnemonic comment
7D00 —
i 169.
7DOC As given on page
700D 0164 32 LD BC,+3264 PLOT 100,50
7D10 CD E5 22 CALL PLOT-BC
7D13 c9 RET ‘Return to BASIC'.
DRAW:

The use of DRAW x,y is really an extension of the PLOT x,y command as the
set of pixels that constitute a straight line is defined and manipulated.

DRAW x,y,a involves drawing an arc and is similar in many aspects to
CIRCLE x,y,r.

— DRAW x,y

There are two suitable entry points for this command.

i. Enter at DRAW—1 (2477) with the values of x" & ‘y’ being the topmost
entries on the calculator stack. The permanent colour values are copied
to the temporary system variables after the line has been drawn.

ii Enter at DRAW—-3 (24BA) with the B register holding ‘ABS y’, the C
register holding ‘ABS x’, the D register holding ‘SGN x’ and the E register
holding ‘SGN y’.

The following routine shows a line being drawn. Note that the H'L’ register

pair has to be saved, and later restored, if a successful return to BASIC is to
made.

address machine code mnemonic comment

7D00 — .

7DOC As given on page 169.

7D0D D9 EXX Save the value of

7DOE E5 PUSH HL H’L’ on the machine stack.
7DOF D9 EXX

171

7D10 FD 364364 LD (COORDS—x),+64 Set the last
7D14 FD 364464 LD (COORDS—y),+64 coordinate values.

7D18 013232 LD BC,+3232 This will give:
7D1B 110101 LD DE,+0101 ‘DRAW 50,50’
7D1E CDBA 24 CALL DRAW-3 Now draw the line.
7D21 D9 EXX Restore the value
7D22 E1 POP HL of H'L".

7D23 D9 EXX

7D24 Cc9 RET

The above routine sets the ‘last plot position’ to ‘100,100’ and then draws the
line +5@,+50".

— DRAWXx,y,a

In order to draw an arc the three values ‘x,y & a’ have first to be placed on
the calculator stack in either their long or their short five byte forms. Then a
call can be made to DRAW—ARC (2394).

The following routine gives the same result as:
Draw 50@,50@,1 with the last plot position being ‘100,100’.

address machine'code mnemonic comment

7D00 — .

7D0C as given on page 169.

7D0D D9 EXX Save the value of H'L’
7DOE Eb PUSH HL on the machine stack.
7D0F D9 EXX

7D10 FD 364364 LD (COORDS—x),+64 Set the last
7D14 FD 364464 LD (COORDS—y),+64 coordinate position.

7D18 EF RST 0028 Use the CALCULATOR.
7D19 34 DEFB +34 ‘stk-data’.

7D1A 40 B0 00 32 DEFBs (= +560 dec.)

7D1E 31 DEFB +31 ‘duplicate’.

7D1F Al DEFB +A1 ‘stk-one’.

7D20 38 DEFB +38 ‘end-calc’.

7D21 CD 94 23 CALL DRAW—ARC Draw the actual arc.
7D24 D9 EXX Restore the value
7D25 E1 POP HL of H'L".

7D26 D9 EXX

7D27 (05°] RET ‘Return to BASIC'.

In the routine the values obtained for ‘x,y & a’ are dec. +50, +60 & +1.
CIRCLE:

Once again the three operands of the command have to be placed on the
calculator stack before a call can be made to CIRCLE—1 (232D).

172

The following routine shows this being done. Note that there is no appreci-
able saving of time by drawing circles from machine code as it is the CIRCLE
command routine that is slow.

address machine code mnemonic comment

/000 As given on page 169.

7D0C

7D0D D9 EXX Save the value of H'L’
7DOE E5 PUSH HL on the machine stack.
7DOF D9 EXX

7D10 EF RST 0028 Use the calculator.
7D11 34 DEFB +34 ‘stk-data’.

7D12 40B00064 DEFBs (= 100 dec.)

7D16 31 DEFB +31 ‘duplicate’.

7D17 34 DEFB +34 ‘stk-data’.

7D18 40 B0 00 30 DEFBs (=48 dec).

7D1C 38 DEFB +38 ‘end-calc’.

7D1D CD 2D 23 CALL CIRCLE—1 Draw the actual circle.
7D20 D9 EXX Restore the value
7D21 E1 POP HL of H'L".

7D22 D9 EXX

7D23 C9 RET ‘Return to BASIC'.

The above routine produces the same result as:

‘CIRCLE 100,100,48’
Note that the permanent colour values are copied to the temporary system
variables whenever an arc or a circle is drawn using the above routines.

8.9 POINT, ATTR and SCREENS
These three functions can be called from a machine code routine in a fairly
easy manner as they each have a separate evaluation subroutine. They can
also be called as functions by using ‘VAL’ but so doing does not appear to
be worth considering.
POINT:
The coordinates of the pixel to be handled are entered into the BC register
and the subroutine called as POINT—1 (22CE). As usual the B register holds
the ‘y’ coordinate and the C register the ‘x’ coordinate.

The following routine shows this being done.

address machine code mnemonic comment
i As given on page 169.
/D0C
7D0D 3E 41 LD A/A’ Print an ‘A’.
7DOF D7 RST 0010
7D10 3EOD LD A,Cr Go on to the next
7D12 D7 RST 0010 line.

173

7D13 0104 AE LD BC,+AE04 This will be the same
7D16 CD CE 22 CALL POINT-1 as ‘POINT (4,174)".
7D19 CDE32D CALL PRINT—FP Show the result.
7D1C C9 RET ‘Return to BASIC'.

The above routine is the same as:
‘PRINT “A";CHR$ 13;POINT (4,174)’
ATTR:
The ‘line’ number is entered into the C register and the ‘column’ number
into the B register and the subroutine called at ATTR—1 (2583). The result
of the test is returned as the top entry on the calculator stack.
The following routine shows this being done.

address machine code mnemonic comment

DO As given on page 169.

7D0C

7D0OD 3E 11 LD A,PAPER’ Make the paper colour
7D0F D7 RST 0010 by ‘cyan’. (Temporary)
7D10 3E 05 LD A,/ cyan’

7D12 D7 RST 0010

7D13 3E FF LD A,COPY’ Print the token ‘COPY".
7D15 D7 RST 0010

7D16 3EOD LD A, ‘cr’ Go on to the

7D18 D7 RST 0010 next line.

7D19 0100 04 LD BC,+0400 This will be the same
7D1C CD 83 25 CALL ATTR-1 as ‘ATTR (0,4)".

7D1F CDE32D CALL PRINT—FP Show the result.
7D22 C9 RET

The above routine is the same as:
‘PRINT PAPER 5;CHR® 255;,CHRS 13;ATTR (0,4)’

SCREENZ
Again the ‘line’ number is entered into the C register and the ‘column’ num-
ber into the B register. The subroutine can then be called by using CALL
SCREENS$—1 (2538). The result is returned as the top entry on the calculator
stack but note it is a set of string parameters.

The following routine shows this being done.

address machine code mnemonic comment

;ng " As given on page 169.

700D 3E7A LD A,z Print a character.

7DOF D7 RST 0010

7D10 3E 0D LD Acr’ Go on to the next line.
7D12 D7 RST 0010

7D13 010000 LD BC,+0000 This will be the same as

174

7D16 CD 38 25 CALL SCREEN$—1 ‘'SCREENS (0,8)".

7D19 CDF12B CALL FETCH Collect the parameters.
7D1C CD 3C 20 CALL PR—STRING Print the string.
7D1F Cc9 RET ‘Return to BASIC'.

The above routine is the same as:

‘PRINT “z"";CHR$ 13;SCREENS (0,0)
Remember that SCREENS will only search the character set and hence looks

for codes in the range hex. 20—7F.
Note: See appendix iv; the ‘SCREENS’ error. The double storing of the result
does not occur when the entry point ‘SCREEN®-1’ is used.
8.10 PI, RND and INKEY$
These three functions are grouped together because their evaluation routines
are included in the ‘expression evaluator’ and it is not possible to evaluate
them in a direct manner. However by the use of the ‘val/vals’ routine in the
CALCULATOR that calls the ‘expression evaluator’ it is feasible to consider
evaluating:

VAL CHRS$ 167 for Pl

VAL CHR$ 165 for RND
and VALY CHR$ 166 for INKEYS.

Pl:
The actual evaluation procedure for Pl is:
Pl equ. 262C
address mnemonic comment
262C RST 0028 Use the CALCULATOR.
262D A3 Stack ‘P1/2’
262E 38 ‘end—calc’.
Doubles ‘P1/2’ by increasing

262F INC (HL)
D the exponent.
This procedure takes only four locations and therefore is readily copied. It
can be called as ‘"VAL CHRS$ 167’ if wished and the method is shown in the
next routine.

address machine code mnemonic comment

D00/ As given on page 169

7D0C '

7D0D 3E A7 LD APl The code for PI.

7DOF CD 282D CALL STACK—A It is stacked.

7D12 EF RST 0028 Use the CALCULATOR.
7D13 2F DEFB +2F ‘chrs’.

7D14 38 DEFB +38 The string “P1"" is now defined .
7D15 06 1D LD B,+1D The literal for ‘val’.
D17 EF RST 0028 Use the calculator.

7D18 3B DEFB +3B ‘fp—calc—2’ the single

operation routine.

175

7D19 38 DEFB +38 ‘end—calc’.

7D1A CD E32D CALL PRINT—FP Show the result.
7D1D Cc9 RET ‘Return to BASIC'.
RND:

In the SPECTRUM the random numbers are obtained by:
i. Fetching the value of the system variable SEED.

ii. Changing the value according to the rules given below and restoring it in
SEED.

iii. Dividing the value by 65,536.

When power is first applied to the SPECTRUM, or after a NEW, the value in
SEED is zero. Then with the first call to the ‘RND’ routine the value of SEED
becomes dec. 74.
This makes the first random number:
74 / 65,636 = .0011291504
The sequence for SEED is:
0, 74, 5624,28652,.....,0,74,.....
and all the numbers from zero to 65,536 are present.
The rules for changing the value of SEED are:

i. Add ‘1.
ii. Multiply by ‘75".
iii. Take the modulus 65,537. i.e. the remainder after dividing by 65,537.
iv. Subtract ‘1".
The following BASIC program shows these changes.

10 INPUT “SEED?";CHR$ 32;SEED
20 PRINT ““OLD VALUE ="";CHRS$ 32
;SEED
30 LET SEED=SEED+1
40 LET SEED=SEED*75
50 LET SEED=SEED—65537*INT (SE
ED/65537)
60 LET SEED=SEED—1
70 PRINT “NEW VALUE =";CHR$ 32
;SEED
80 GO TO 30
In the monitor program the actual evaluation procedure for ‘RND’ is as
follows:
RND equ. 25FD
RND-END equ. 2625

176

address
25FD
2601
2604
2605
2606
2607
2608
260A
260B
260C
2611
2612
2613
2614
2615
2616
2617
261A
261E
261F
2620
2622
2624
2625

mnemonic

LD BC,(SEED)
CALL STACK—BC
RST 0028

A1l

OF

34

37 16

04

34
8041000080
32

02

A1l

03

31

38

CALL FP—TO-BC
LD (SEED),BC
LD A,(HL)

AND A

JR Z,RND—END
SUB +10

LD (HL)A

comment

Fetch old value of SEED.
Put it on the stack.

Use the CALCULATOR.
Stack ‘1’.

SEED=SEED+1: ‘addition’.
Stack the

value ‘75’ dec.
SEED=SEED*75: ‘multiply".
Stack the

value ‘65,637’ dec.
‘n—mod—m’.

‘delete’. (The quotient)
Stack ‘1",

SEED=SEED-1: ‘subtract’.
‘duplicate’.

‘end-calc’.

‘CALL 2DA2".

Enter new value of SEED.
Fetch the exponent.

Test for zero.

Jump if it is.

Divide by 65,536.

Restore exponent.

The value for ‘RND’ is now the top value on the calculator stack.
The RND routine can be called from a machine code routine by consider-

ing the result of evaluating:

VAL CHR$ 165

The routine for evaluating Pl given on page175can be used with the single

alteration of:

7D0D 3E A5 : LD A,+Ab

INKEY 3:

There is a variety of ways in which the keyboard of the SPECTRUM can be
read from machine code.

i. Indirectly by reading the system variable LAST—K.

ii. The keyboard can be scanned using ‘IN’ instructions in a manner identi-
cal, or similar, to that used in the KEY—SCAN subroutine at 028E.

iii. The subroutine KEY—SCAN can be called itself and the resultant key«
values matched against known values.

177

iv. The actions taken in the INKEYS$ routine at 2646 can be copied.
i.e. CALLKEY-SCAN :CALL 028E

LD C,+00 : Ensure ‘K’, ‘L’ or ‘C' modes.
JR NZ,No-key : Multiple keys were pressed.
CALL KEY—TEST : Do not accept ‘shift alone’
JR NC,No-key : or ‘no keys'.

DECD : Ensure ‘L’ or ‘C' modes.

LD EA : Move the key number.

CALL KEY—CODE :CALL 0331:
and the character code is available in the A register.
v. The INKEY$ routine can be used by evaluating the expression ‘VALS

CHR$ 166".

The following routine shows this last approach being used.

address machine code mnemonic comment

UBOLS As on page 169.

7D0C

7D0D ~ 110008 LD DE,+0800 Read INKEY$ 2,048 times.

7D10/B(st5 PUSH DE Save the counter.

7D11 3E A6 LD A, INKEYZ’

7D13 CD 282D CALL STACK—A Stack the code.

7D16 EF RST 0028 Use the CALCULATOR.

7D17 2F DEFB +2F ‘chrs’.

7D18 18 DEFB +18 ‘vals’. Note: ‘vals’ can be used
this way whereas ‘val’ cannot.

7D19 38 DEFB +38 ‘end-calc’.

7D1A CDF12B CALL STK—FETCH Fetch the parameters.

7D1D CD 3C 20 CALL PR—STRING No effect if null string.

7D20 CD BF 16 CALL SET—WORK Clear the work space or it
will encroach on this routine.

7D23 D1 POP DE Fetch the counter.
7D24 7B LD AE Go around the loop
7D25 B2 OR D until the counter has
7D26 Cc8 RET Z reached zero.

7D27 1B DEC DE Decrease the counter.
7D28 18 E6 JR LOOP Back again.

Notes:

i. When this routine is run it has a similar effect to
FOR A=1TO 2048: PRINT INKEYS;: NEXT A
ii. |f wished locations 7D19—7D1F can be changed to:
1C, 38, CD, E3 2D, 00, 00
which will give:
FOR A=1TO 2048: PRINT CODE INKEY$;: NEXT A

178

8.11 ‘BREAK’
On many occasions it is useful to allow an exit to be made from a machine
code routine by scanning for the ‘BREAK" key.
The following routine shows how this can be done.
BREAK equ. 7DOD

address machine code mnemonic comment

7D00 - As gi

_7_900 s given on page 169.

7D0D 3E 7F LD A +7F

7DOF DB FE IN A,(+FE) Input address 7FFE.
7D11 1F RRA Bit O of A will be reset
7D12 DO RET NC if ‘BREAK’ pressed.
7D13 18 F8 JR BREAK Back again.

In the routine the half row of the keyboard — BREAK to B — s repeatedly

scanned. An exit will only occur when the bit that represents the ‘BREAK’
key becomes reset.

8.12 Conclusion
By this stage the reader should be confident about writing a machine code
routine that involves the use of perhaps twenty to thirty instruction lines.
Such a small routine can then be used within a BASIC program, being called
by ‘USR number’.

The whole operation can then be repeated for another ‘task’ and hopefully
in the end a BASIC program will consist of only a single line:

10 RANDOMIZE USR..

as no ‘returns to BASIC’ are made until the end of the machine code routine
has been reached.

179

Appendix i.
Tables of Z80 machine code instructions
00 01 02 03 04 05 06 07 08 09 0A 0B oc 0D 0E OF
NOP |LD LD INC INC | DEC | LD RLCA EX ADD LD DEC |INC |DEC |LD RRCA
BC,+dddd| (BC),A BC B B B,+dd AF,A‘F'|HL,BC A,(BC) BC c C C,+dd
10 1 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
DINZe|LD LD INC INC DEC | LD RLA JR,e |ADD LD DEC | INC DEC | LD RRA
DE,+dddd| (DE),A DE D D D,+dd HL,DE A,(DE) DE E E E,+dd
20 21 22 23 24 25 |26 27 28 29 2A 28 2 |20 |26 |2F
JR LD LD INC | INC | DEC |LD DAA | JR ADD LD DEC |INC |DEC |LD CPL
NZ.e HL,+dddd| (addr),HL| HL H H H,+dd Ze HL,HL HL,(addr) | HL L L L,+dd
30 31 32 33 34 35 36 37 38 39 3A 38 |3€¢ |3 |3E |3E
JR LD LD INC |INC | DEC |LD SCF JR ADD LD DEC |INC |DEC |LD CCF
NC,e |SP,+dddd | (addr),A | SP (HL) (HL) (HL),+dd Ce HL,SP A,(addr) |SP A A A, +dd
4 4 i 42 |44 |46 146 |4 48 |49 4A 48 |4C 4D |4E |4F
LD LD LD LD LD LD LD LD , LD LD LD LD LD LD LD LD
BB |[BC B.D BE |BH |BL |B(HL)|BA CB |CC CD CE |CH |CL |[C/(HL)|CA
20 5l 22 53 (54 |55 |66 57 58 |59 5A 58 |5C |BD |BE |BE
LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD
D,B D,C D,D D,E D,H D,L D,(HL)| D,A E,B E,C E,D E,E EH E,L E,(HL)| E,A
60 61 62 63 64 65 66 67 68 69 B6A 6B 6C 6D 6E_ | 6F
LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD
H,B H,C H,D H,E HH H,L H,(HL)| HA L,B L,C L,D L,E LH L,L L,(HL) | LA
0 |1 2 B |1 |15 |18 |17 ‘V“ 8 |19 7A B |1c |m |E |z
LD LD LD LD LD LD HALT | LD i LD LD LD LD LD LD LD LD
(HL),B |(HL),C (HL),D (HL),E| (HL),H| (HL),L (HL),A '/ A,B A,C A,D AE AH AL A,(HL)| AA

180 181

80 81 82 83 84 85 86 87
ADD |ADD ADD ADD |ADD |ADD |ADD |[ADD
AB |AC AD AE |AH |AL |A(HL) [AA
90 91 92 93 94 95 96 97
SUB [SUB suB SUB |SUB [SUB |SUB |[SUB
B c D E H L (HL) |A
A0 Al A2 A3 A4 |A5 A6 A7
AND [AND AND AND |AND |AND |AND |[AND
B Cc D E H L (HL) |A
BO B1 B2 B3 B4 BS B6 |B7
OR |OR OR OR |OR |OR |[OR |OR
B c D E H L (HL) |A
co 1 c2 c c4 C5 c6 ¢7
RET |POP JpP JpP CALL |PUSH |ADD |RST
NZ BC NZ,addr |addr |NZ,addrBC A, +dd | 0000
DO D1 D2 D3 (D4 D5 Dé D7
RET |POP JP OUT |CALL [PUSH [SUB |RST
NC |DE NC,addr | (+dd),A|NC,addr|DE +dd | 0010
E0 E1 E2 E3 E4 ES E6 E7
RET |POP JP EX |[CALL |PUSH |AND |RST
PO HL PO,addr | (SP),HL|PO,addrlHL |+dd |0020
FO El F2 F3 F4 F5 F6 F7
RET |POP JP DI CALL |PUSH |OR RST
P AF P,addr Paddr |AF |+dd | 0030

182

88 89 8A 8B 8C 8D 8E 8F
ADC |ADC ADC ADC |ADC |ADC |ADC |ADC
AB AC AD AE AH AL A,(HL)| AA
98 99 9A 98 9C 9D 9E 9F
SBC |[SBC SBC SBC |[SBC |SBC |SBC [SBC
AB AC AD AE AH AL A,(HL)| AA
A8 A9 AA AB AC AD AE AF
XOR |XOR XOR XOR |XOR |XOR |XOR |XOR
B c D E H L (HL) | A
B8 B9 BA BB BC BD BE BF
cP cP cP cP cP cP cP cP
B c D E H L (HL) |A
c8 c9 CA CB cC CD CE CF
RET |RET JP see CALL |[CALL |ADC |RST
Z Z,addr pages |Z,addr |addr A,+dd | 0008
D8 D9 DA DB DC DD DE DF
RET |EXX JP IN CALL |see SBC RST
c C,addr A,(+dd) |C,addr F;asgse A,+dd | 0018
E8 EQ EA EB EC ED EE EE
RET |JP JP EX CALL [see XOR | RST
PE (HL) PE,addr |DE,HL |PE,addr ﬁ%gj +dd 0028
] F9 EFA FB EC FD FE FF
RET |LD JP El CALL |see cP RST
M SP,HL M,addr M,addr F;%%e +dd 0038
183

The Indexing Instructions
ED Instructions

All the instructions using the I1X register pair are prefixed ‘DD’ and those

Fr\‘fj L %3 0 % 0 E_Blég llé_!'lglg_o using the 1Y register pair are prefixed ‘FD’.
B,(C) D,(C) H,(C) In the following table read IY for IX and FD for DD if required.
ED41 ED 51 ED 61 ED A1 ED B1
o cP! cPIR DD 09 ADD IX,BC DD CB d06 |RLC (IX+d)
ED42 ED52 ED 62 ED72 ED A2 EDB2 DD 19 ADD IX,DE DD CB dOE | RRC (IX+d)
SBC SBC SBC SBC INI INIR DD 21 +dddd | LD IX,+dddd DD CB d 16 RL (IX+d)
:;z;’ ';;5'335 :";':; :gjz ——e = DD 22 addr |LD (addr)IX || DD CB D1E |RR (IX+d)
{addr).BC | (addr),DE | (addr),HL | (addr),sP | OUTI OTIR DD 23 INC IX DD CB d26 |SLA {IX+d)
SerT | DD 29 ADD IX,1X DD CB d2E |SRA (IX+d)
NEG - DD 2A addr | LD 1X,(addr) DD CB d3E |SRL (I1X+d)
ED 45 ! DD 2B DEC IX DD CB d46 |BIT 0,(IX+d)
RETN DD 34 d INC (I1X+d) DD CB d4E | BIT 1,(1X+d)
lgmogg |§|\7[|)1§§ %15_6 DD 35 d DEC (I1X+d) DD CB d56 |BIT 2,(1X+d)
=y T = DD 36 d+dd | LD (IX+d),+dd || DD CB d5E | BIT 3,(IX+d)
LD~ b RRD DD 39 ADD IX,SP DD CB d66 |BIT 4,(IX+d)
LA Al DD 46 d LD B,(IX+d) DD CB d6E |BIT 5,(IX+d)
IEWD@ :5_05_8 536_8 ED 78 E_gé_e E_gg_g DD 4E d LD C,(I1X+d) DD CB d76 |BIT 6,(IX+d)
c.(c) E.(C) L.(C) A,(C) DD 56 d LD D,(IX+d) DD CB d7E | BIT 7,(1X+d)
ED 49 ED 59 ED 69 ED 79 ED A9 ED B9 DD 5E d LD E,(I1X+d) DD CB d86 |RES 0,(IX+d)
(CL;I: ?CL;; ?CL;I %;,TA CPD CPDR DD 66 d LD H,(IX+d) DD CB d8E |RES 1,(IX+d)
Eoan (=R T TR DA EDBA DD 6E d LD L,(IX+d) DDCB d96 |RES 2,(IX+d)
ADC ADC ADC ADC IND INDR DD 70 d LD (IX+d),B DD CB d9E RES 3,(1X+d)
HL.BC HL.DE HLHL HLSP DD 71 d LD (IX+d),C DD CB dA6 | RES 4,(IX+d)
E_g‘lﬁ. %.3.5_5 E—B—B E_glfl g—g% g__DrF% DD 72 d LD (IX+d),D DD CB d AE | RES 5,(I1X+d)
BC,(addr) | DE,(addr) | HL,(addr) | SP,(addr) DD 73 d LD (IX+d),E DD CB dB6 | RES 6,(IX+d)
ED 4D DD 74 d LD (IX+d),H DD CB dBE | RES 7,(IX+d)
RETI DD 75 d LD (IX+d),L DD CB dC6 |SET 0,(IX+d)
E_gﬁ E_Bs_ E_Eﬁf DD 77 d LD (I1X+d),A DD CB dCE |SET 1,(IX+d)
R,A AR DD 7E d LD A, (IX+d) DD CB dD6 |SET 2,(IX+d)

DD 86 d ADD A, (IX+d) DD CB dDE |SET 3,(IX+d)

DD 8E d ADC A, (IX+d) DD CB dE6 |SET 4,(IX+d)

DD 96 d SUB (IX+d) DD CB dEE |SET 5,(IX+d)

DD 9E d SBC A,(IX+d) DD CB dF6 |SET 6,(IX+d)

DD A6 d AND (IX+d) DD CB dFE |SET 7,(1X+d)

DD AE d XOR (IX+d) DD E1 POP IX

DD B6 d OR (IX+d) DD E3 EX (SP),IX

DD BE d CP (IX+d) DD E5 PUSH IX

DD E9 JP (1X)
DD F9 LD SP,IX

184 185

Appendix ii

&

DECIMAL-HEXADECIMAL CONVERSION TABLE

DECIMAL-HEXADECIMAL CONVERSION TABLE

DECIMAL 0-65,280 HEXADECIMAL 00—FF, high byte

Hex.

Decimal

28406284062840628406284062840628406284062840628406284062840&2840
NOVLANNRMIION—LCNRMNAITOWH N NOTANOWANNMOTOHONOMAT W NOT DU SO NN M 0T OO N
146914692479247925702570258035803GslﬁﬁsJﬁﬁﬂJﬂﬁﬁJAﬁﬁz4J9247025702

PR NOO0OO——t=tANANNNMMINTT TN OOOONNNNNOOORITNNNOCCOO— A NNNNMM M T TOWN
T WLOWLWVWV VLWV WO LW WD WO O DD O LD LD LD LD LD D LD LD LD LD L LD LD O O WO LD LO (O (O LD O LD OO OO WO O

Hex.

Decimal

omamsworocoadDOQUWLlo~Nmsvwor~oaNUAWLe
60 00 00 60 00 €0 60 00 0 & 65 00 60 60 O VN MNP D N D D D T gy O Oy o v A L

Al
A2
A3
A4
A5
A6
A7
A8
A9

NI TLTLUNNWNNOOWONNINN00ORNITNNCCOCO i NN NMM M O < LD LD LD OO OO NI~ I 00000000
Rl lie el e e Dae Doe Doe e Roe o e e Ko Hor Do e o oo Ko e o o Mo K R T PR S X RS RS Sl g SR e e e e e R R g

Hex.

Decimal

0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
TIII TSI ST I T T T ODDDDLVVOV RV PNV OOOLOOOOOOGOBEWOWONNIINININININ NN U~~~ T~

TOOVNXVITOOVNNTOVONRTOVNOTOWNROLTOWNROTOWNRTOWNRTOWNOTOONRTOWONOTOWNRTOWON
VT ANOCONNMOTON~HONIMANTOVNNOTOANOONNMNOTONONONAT OO~ NOTNINOONNMOT O —
35814691469247ﬂ247935Jﬁ25702580358036813681369146914692479247025

R N A A Y LT B i e e e e e A A A Sl B A e e A A A A A L2
OO0 OVRRNNONOCCCO™m—NNNANMNNMNT LT NUIOOOWNIININ 00NV NNNNO OO O i i et NN
et e e A e e S e A A NN NN NN NN NN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMMOMMONMMO o™

Hex.

Decimal

omamsvwornoadNOQUWLo~amesvorcodUQULLo~amesworoa(O0AQWLo~amewo~oad0OAWWL
COCOOOOCOO OOt it et ooy et et N OV N NN N N NN Ny NN (g N NIV 00 € 03 00 60 0 €99 00 60 gy € 073 €2 90

CONVFTOWNOITOWNRTOWNRTOWNOOTOWNRT OO NI O N OO N T DO N0 T OO N OO T OO N T OWOND
W—HONOMNNTOWA S NOTANOONNMOTON~—HONOMNATOV N NXNTNNOCONNMOTONONRDMD T OO~

L mE U A L N DR b U A S i AR S A S S A S S S A A A AR AN S S S A
HEEE ANNNNMOOMSITTONNNOOOONNNNNORRVRNNNNCO O —ANANNNMNMMT TN
Ll e D e e e L L e e e L D e e e e e e e T

Hex. 2's C.

Dec.

TONAHONONOUOTONAONONONTMN~ONONONLT N N~ONO N

IRRARRRRRRRRNRARARRRRRARARRARRRRNAR RN

OO TMON—O

TTTTTTTETTTI PP T

—26
—25
—24
—23
=22
=21
—20
==19

234567890.I.234567890123456789012345678901234567890123456789012345
9999999900000000001111111111222222222233333333334444444444555555
1111111122

&37654321098765432109876543210

OO N~
K 111111111111111111111111111llnﬂﬂﬂﬂnﬂﬂﬂﬂn—lnﬂo—oo_oo_oo_oo_co_oo_osso_o-ﬂﬂﬂ._/-mquq47%%%%%

T B e D A Y

Hex.

Dec.

22222222211111l1111000000000098765432109876543210

omamswo~oanLNUAUL cmnamsnvo~oalDOAWLS

Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
8D
BE
BF

8901234567890123456789012345678901234567890123456789012345678901
2233333333334444444444555555555566666666667777777777888888888899
e et et et e e et et et e el el e et e e et e el e e e e et £t e e e e e 1 e et #mmd el red 1med 1l ek 1l e o 1 Pomd ek i et #md

DECIMAL 0-255 HEXADECIMAL 00—FF, Low byte

Hex.

Dec.

oramneworoaLDOOULo~amenonoeLDOAWL 6~ amwwomoe LOOOWLL o mam < ww ~o o DOOWL
TIIIIIIIICICL LTI T DD DD D DD DD LD LD LD LD LD LD (0 (0D L0 L0 10 L0 10 L0 (D L0 (0 (O LD LD D w1 o o o P Pt I o T T T P e T e

456789012345678901234567890123456789012345&789012345678901234567
5666667777777777888888888899999999990000000000111111111122222222
Tt e ot ot o ot 1 1 e]] el e 1o] e e e] el 7l] e e el

Hex.

Dec.

0123456789ABCDEF0123456789ABCDEFOI23456789ABCDEF0123456789ABCDEF
00o0000000000000111111111111111122222222222222223333333333333333

0123456789012345678901234557890123456789012345678901234567390123
11.I-.l.l1111122222222223333333333444444444455555555556666

187

186

Appendix iii.

Currently available machine code handling programs.
At the present time the author has seen only three programs although in
due course there will be many more produced.

i. SPDE (SPECTRUM disassembler and editor) — CAMPBELL SYSTEMS.
This is a magnificent program for the beginner,

The ‘Hex input’ program given in chapter 8 is a rudimentary editor pro-
gram as compared to this most polished program.

SPDE allows the user to examine the contents of any of the locations of
the SPECTRUM'’s memory. The contents are displayed in hexadecimal form
and followed by the appropriate mnemonics. This forms the disassembler
part of the program.

But SPDE also allows the user to enter machine code into memory by
using either hexadecimal characters or ordinary characters. A user-written
routine can then be executed.

SPDE is a pleasure to use. It has an excellent display format and allows for
both forward and backward paging.

ii. SPECTRUM BUG — ARTIC COMPUTING.
This is a very complicated machine code handling program. Again it has a dis-
assembler so that the mnemonics can be shown.

SPECTRUM BUG is really intended for the serious machine code program-
mer and therefore allows for the inclusion of ‘break points’ as well as the
facility to examine the contents of the registers of the Z80.

SPECTRUM BUG is straightforward to use but it is not so ‘user friendly’
as SPDE.

iii. SPECTRUM MONITOR — PICTURESQUE.

This program is really very similar to SPECTRUM BUG and is perhaps a little

easier to use. Again machine code programs can be disassembled (and printed

if desired) and user written routines entered (with or without break points).
The display format of SPECTRUM MONITOR is a pleasant white on blue

but even so it is not as good as the display of SPDE.

Future programs:
Francis Ainley will soon be producing a SPECTRUM version of his MACHINE
CODE TEST TOOL and it should prove to be fairly successful.

Three firms, at least, will soon be producing assembler programs. The firms
are: ARCTIC COMPUTING, BUG BYTE and PICTURESQUE, but it remains
to be seen which product will be the most successful.

188

Appendix iv. SPECTRUM ‘bugs’

The 16K monitor program is an excellent program but there are a few pro-
gramming errors. The following list details eleven errors of which only the
first two are really important.
i. The ‘division’ error (credit to Dr. Frank O’Hara)
Location hex. 3200 should contain hex. DA rather than hex. E1. This
error in the ‘division’ routine leads to, for example;
0.5 having the floating-point form 7F 7F FF FF FF
but 1/2 " - LA 8000 00 00 00
ii. The ‘—65536’ error. (credit to Dr. lan Logan)
In the monitor program there is a failure to be consistent over this num-
ber. On some occasions it is taken as ‘00 FF 00 00 00" whilst on others
it has its full floating-point form.
The best example of this error is given by;
PRINT INT —65536 which gives —1.
iii. The ‘program name’ subroutine.
The subroutine from 04AA—04C1 applies to the ZX81 and should
have been deleted.
iv. The ‘CHRS$ 9’ error.
In the PRINT—OUTPUT routine there is a section for handling ‘CHR$
9’ — rightspace. However the programmer has failed to store the new
print position so ‘CHR$ 9’ will only work if the next printing is at
a newly defined place.
e.g. PRINT PAPER 2;CHRS 9;AT 4,0;
does work but is not helpful.
v. The ‘scroll?’ error. (Also applies to ‘start tape . .")
It is not possible to reply to a prompt message with CAPS LOCK,
shift & GRAPHICS or shift & SYMBOL SHIFT without the previous
edit-line being copied to the lower part of the screen. The error occurs
in the KEYBOARD—INPUT routine that fails to recognise the ‘prompt’

situation.
vi. The ‘current line cursor’ error. (credit to Paul Harrison)

It is possible to get an edit-line containing a ‘cursor’.

e.g. enter 100 PRINT & ENTER
101 & ENTER
Shift & EDIT

A ‘current line cursor’ will appear in the edit-line because the ‘edit-line’
number +‘1’ equals the ‘current line’ number. The mistake is in the
‘print a BASIC line subroutine’.

vii. The ‘leading space’ error.
There is an inconsistency over the printing of leading spaces before

tokens.
e.g. PRINT CHR$ 255,CHR$ 13;CHR$ 255

189

viii.

Xi.

Xii.

and the leading space is present on the first occasion but suppressed on
the second.

The ‘K-mode’ error. (credit to Chris Thornton)

When the SPECTRUM is in K-mode a keyword will be printed if a
suitable key is pressed. Unfortunately if the key is held down the key-
word is repeated. .

The mistake here is in the ‘key repeat’ subroutine that continues to
supply the same code even though the mode has been changed to ‘L’.
The subroutine should test that bit 3 of flags has not been changed.

The ‘CHR$ 8’ error. (credit to Dr. Frank O'Hara)

Location 0A33 should contain hex. 19 rather than hex. 18. ‘Backspac-
ing” works perfectly well whilst it is used in lines 1 to 21. It is however
not possible to ‘backspace’ from the start of line 1 to the end of line 0
as the programmer has used the wrong limit. Indeed ‘backspacing’
from ‘0,0’ leads to a variety of interesting results.

The ‘SCREENS’ error. (credit Stephen Kelly-and others.)

Location 257D should contain hex. C9 (RET) rather than hex. C3 (JP).
As a result of the error the string obtained by using SCREENS is stored
twice.

This can be shown by:

10 PRINT 123"
20 PRINT SCREENS (0,0)+SCREENS (@,1)
Which will give the string ‘22’.
This error can be avoided by the use of temporary string variables,
i.e. 20 LET S$=SCREENS (@,0)
30 LET T$=SCREENS (0,1)
40 PRINT S$+T%
The ‘STR@’ error. (credit Tony Stratton)

When handling numbers in the range -1 =n =1 (but not zero)
the PRINT—FP routine puts an extra zero on the calculator stack there-
by giving more ‘results’ than ‘operations’.
Hence: PRINT “A"”+STR$ /.1 is evaluated as PRINT “""+STR$0.1
and PRINT 1+VAL STRA 0.1 as PRINT 0+VAL STR9 (3.1 etc.
Again this error can be avoided by the use of temporary string variables
when handling parameters of STR$ that are likely to give errors; or by
placing STRS before any binary operators.
The ‘CLOSE’ error. (credit Martin Wren-Hilton)
Any attempt to CLOSE streams +04 to +0OF without first opening the
stream will lead to either i. a system restart — as a jump is made to
location hex. 0000, or ii. the production of a strange report.

The reason for this error occurring is that the ‘CLOSE stream
look-up’ table at hex. 1716 does not finish with an end marker as is
customary at the end of such a table.

190

INDEX

Notes: BASIC commands or functions are given in

capitals as usual. e.g. LIST.

System variables are labelled — ‘(SV)’.
Monitor program routines are labelled — ‘(ROM)".

Z80 machine code instructions have — ‘instructions’.

A

ABS

Absolute addressing
Absolute binary arithmetic
ACS

ADC instructions
ADD-CHAR (ROM)
ADD instructions
Address bus
Addressing modes
Alternate register set
AND

AND instructions
Arithmetic logic unit
ASN

Assembler

Assembly format
ATN

ATTR

Attribute area
ATTR-P (SV)

ATTR-T (SV)

B

BASIC interpreter
BASIC line format
BASIC program area
BC-SPACES (ROM)
BEEP

BEEPER (ROM)
BIN

BIT instructions
Block handling instructions
BORDCR (SV)
BORDER

BREAK key
BRIGHT

c

CALCULATOR (ROM)
Calculator stack

CALL instructions

Carry flag

CAPS LOCK key

CAT

CH-ADD (SV)

Channel information area
Channel usage

CHANS (SV)
Character set
Chebyshev polynomials

CHR$

CIRCLE

CLEAR

CL-LINE (ROM)

CLOSE

CLS

CL-SET (ROM)

CL-SCROLL (ROM)

CODE

Command class routines (ROM)
Command class table (ROM)
Command routines (ROM)
Command table (ROM)
Compressed form of floating-point
CONTINUE

Control characters

COORDS (sV)

COPY

Ccos

Colour items

CP instructions
D

DATA
Data bus

g
156
115

156
118

118
12 48 47

75 114
122
156
156
174

15

35 87 88
162
162
Ch.7
17 32

143 160
160

132
132
145 162 163
163

154 161
19 153 154

16 147
33 127 148

135 137 141
40 43

167 175

24 38

145 165

166
157 178
161 152

162
149

37

170
146
157
26 29 30
162
122

11
12

DATADD (SV)

DEC instructions

DEF FN

DELETE

DF-CC (8V)

DIM

Display area — memory mapped
DJNZ instruction

DRAW

E

e

Editing area
EDITOR (ROM)
E-format
E-LINE (SV)
ERASE
ERR-NR (SV)
ERR-SP (SV)
EX instructions
EXP

Exponent

EXPRESSION EVALUATOR (ROM)

E
F register (flag)

FETCH (ROM)

FLAGS (sV)

FLASH

Floating-point representation
FN

FOR

FORMAT

FP-TO-A (ROM)

FP-TO-BC (ROM)

FRAMES (SV)

G

GO suB

GO SUB stack
GO TO

H

Header
Hexadecimal coding
Hex input program
Hex loader program

!
| register (interrupt vector)
IF

IN

INC instructions
Indexed addressing
Indexing registers
Indirect addressing
INK

INKEY$

IN instructions
INPUT

Instruction lines
Instruction register
INT

Integral representation
Interrupt instructions
INVERSE

J
JP instructions

K

K-DATA (SV)
KEYBOARD-INPUT (ROM)
Keyboard interrupt routine (ROM)
KEYBOARD routines (ROM)
KEY-SCAN (ROM)

Key tables (ROM)

|5

LAST-K (SV)

LD instructions
LEN

LET

LINE-ADDR (ROM)
LINE-RUN (ROM)
LIST

Literals (calculator)

137
136

137
137
143

137

40
30
149
136
31
140

168
154

126
170

18
146

151

75
156

146
164

99
19

146

118
77

115
164
175

50
156
65

124

146
146
107
143
143

146

156
154

28 38

177
177

177
111 118

LLIST 32 READ 36 110 : u b : 3 ; o : A\ N
LN 40 156 Read only memory — (ROM) CIRERC O] [s i
LOAD 32 143 161 Real time clock 25 108 4 X 3 . . W - AN
R & s Rew RO % : R e v s | T g N
LPRINT 32 RESERVE (ROM) 148 "y s 3 " . L Kgyre e
RES instructions 102 133 4 J - e g IR
M ‘restack’ (ROM) 158 - = 3 ARy St . s
Machine code instructions 56 Chsb Restarts (ROM) 142 A) . >
Machine stack 14 19 56 96 RESTORE 36 e ke —— 5 2
127 RET instructions 98 129
MAIN EXECUTION (ROM) 136 147 RETURN 37
Main registers {user registers) 51 52 RND 41 175
MAKE-ROOM (ROM) ROM area 13 14
Mantissa 68 Rotation instructions 99 129
MASK-P (SV) 30 35 145 162 RST 0010 (ROM) see PRINT-OUTPUT
MASK-T (SV) 145 162 RST instructions 99
Memory area (calculator’s) 145 155 RUN 37
Memory map 13 14
MERGE 32 143 s
Microdrive maps 14 16 SAVE 37 143 161
Mnemonics 58 SBC instructions 83 120
MODE (SV) 146 SCREENS 42 173
Monitor program 9 ch7 Scrolling 165
MOVE 33 SEED (SV) 36 41
SET instructions 102 131
N SGN 42 156
NEW 33 146 Sign bit 64 68 92
NEWPPC (SV) 25 28 Sign flag 92
NEXT 33 SIN 43 156
NEXT-ONE (ROM) 149 SLICING (ROM) 153
Non maskable interrupt 142 Spare memory area 14 19 110
NOP instruction 721144 S-POSN (SV) 144 168
NOT 40 SQR 43 156
NSPPC (SV) 25 28 Stack pointer 14 19 55 96
STACK-A (ROM) 154 161
o STACK-BC (ROM) 140 154
OLDPPC (SV) 25 STKBOT (SV) 14 19
One’s complement arithmetic 64 109 ‘stk-data’ (ROM) 157 161
ONE-SPACE (ROM) 148 STK-DIGIT (ROM) 154
OPEN 33 148 STK-END (SV) 14 19 147
Operating system 9 ch7 STK-FETCH (ROM) 154
OR 40 STK-STORE (ROM) 153
OR instructions 86 122 STK-VAR (ROM} 153
OSPCC (V) 25 STOP 37
ouT 22 34 STORE (ROM) 145 el L T s
OUT instructions 106 STRMS (SV) 147 -------..
OUT-NUM-1 (ROM) 170 . STRS 43 156
OUT-NUM-2 (ROM) 170 Structuared programming 159
OVER 34 164 SUB instructions 83 120
Overflow/parity flag 94 SUBPPC (SV) 25 151 Delanil o
; ; D el R s £ .
Syntax flag (ROM) 138 = i ; : . ot
S n Sy;\ﬁrt/\xa,; BOML = In this book, he gives a complete Over the Spectrum is the book where you “sammn -.- -
PAPER 34 163 System variable area 14 16 overview of the way the Spectrum will find your dreams really do come
Parameter table (ROM) 149 operates, both for BASIC and machine true. If you want to know how to use
gégs& i? i T language programming. A special the complete facility of the Spectrum,
Ao S s 29 145 150 ;azze o: addresses(écgl,;ll;lator'sl (RON :22 se'c'iap on lhe_ R(?M oPeraii?g system ;E";e" :’5 have the full ";'_'"_9 ‘:’ OL:HI(This title speaks for itself, it's everything
o s =3 able of cnstants will give you insight into this comp#ter pechumprograms, Thisisthe boo you need to understand about Spectrum
PFLAG (SV) 30 34 35 TAN 43 156 as well as provide you with information for you. Fantastic programs such as the Machine Language when you're just
Temporary colours 22 145 165 ; incredible 3D-M Alien Invad g 4 j
145 162 TEMPS (ROM) 165 on how to use many of the routines incredible 3D-Mazeman, Alien Invaders, starting off. A must for all new Spectrum
Pl 41 173 Toten tabIs R OM) S present in the ROM. This book is a must istlo "'e"'."’";“Lm- Games, utilities, owners. Only £6.95
PIP (SV) 146 2 if you are serious about programmin; i an
T) t arithmet 64 94 109 Prog 9 . i
PLOT 35 170 ¥ig s comelsseniatitimene the Spectrum . Only £7.95. areall in Overthe Spectrum. Only £6.95.
POINT a1 173 send to:
u . T . , .
POINTERS (ROM) 147 After leading the way in Sinclair ZX81 software, we've &
POKE 35 UDG (sV]) 14 44 146 hg high Y li o U.S.A.: Melbourne House Software Inc.,
i 96 127 Uncommitted logic arrary g8 1 produced the highest quality, most exciting Spectrum 347 Roed d : Nashvill N 37217
o feons 5 User-defined graphics area 14 20 44 137 software available. From the three excellent books eedwood Drive, Nashville T 2
) 144 148 i t-action gam n i
P-RAMT (SV) 14 12056140 USR — number 43 111 156 depictad above to fast-action games on cassetle, U.K. Melbourne House (Publishers) Ltd.,
Precedence table (priority) 153 USR string aacen we're providing the best choice in Sinclair Spectrum ClebeiCobe Glebe H Stati Road
35 166 9 e Cottage ebe House ation Road
PRINT 32 oo software today. . BSH = ’ ’
PRINT AT v b Cheddington, Leighton Buzzard, BEDS LU7 7NA
Printer buffer :3 1;6 :g; VAL 45 156 175 Whether it's for your new Spectrum or ZX81
iRu(\l_T—Fr;tROM) o 182 5 VALS 45 156 175 Melbourne House has books and programs perfectly Australia & New Zealand:
rinting characters/tokens Variables area 14 18 31 32 suited to your needs *
:nnnng aumbers 12; Variable handling routines (ROM) 5 y . Melbourne House (Australia) Pty Ltd,
rinting strings 1 VARS (SV) 14 18 148 Suite 4/75 P n Crescent
PRINT-OUTPUT (ROM) 136 137 166 VERIFY 38 143 Send for your Spectrum or ZX81 catalogue today. / almersto . d
PRINT TAB 36 46 167 Sth. Melbourne 3205.
PROG (SV) 14 17)
Program counter 51 52 98 w —_—— [] Please send me your Spectrum/ZX81
PR-STRING (ROM) 168 WORKSP (V) 14 19 — g i f
i i B————— 3 - - .
PUSH instructions 96 127 Work space 14 19 — catalogue (please ;pondy)
= I enclose a stamped self-addressed envelope.
R X -
RAM-CHECK (ROM) 146 XORing 34
RAMTOP (SV) 14 20 24 146 XOR instructions 86 122 NAME & & 5 2 ors ¢ 6 e o s vine & 5o & 8 S5e 48 SN0e & % Bisie s
Random access memory — RAM 8 9 13
RANDOMIZE 36 z
RASP (SV) 146 280 microprocessor Ch.1&Ch3 PUBL'SI IERS AdAEeSSiters 5.5 5118 4 5 51s0ier § 5 ialsts) 5 5 o061 51 & wliskay o aheaval’s rae
G105 5 =) shskstel s Sisitert eReletereteNe SRTEIRE I 6101 | - ERPOPRPEEE e

UNDERSTANDING YOUR SPECTRUM

Please fill out this page and return it promptly in order
that we may keep you informed of new software and special
offers that arise. Simply cut along the dotted line and
return it to the correct address selected from those
overleaf.

Where did you learn of this product?

Magazine. If so, which one?...cccecccvcececccccnns .

Through a friend

Saw it in a Retail Store

0000

Other. Please specify...... cesesssecesscscacsasssnsses

Which Magazines do you purchase?

Occassionallyt...eee . caeess otiiie o) o ‘et o o o ek o mioraie o eiviel o »iaietioie ofets

What Age are you?

[1 10-15 [J16-19 [_J20-24 [| over 25

We are continually writing new material and would appreciate
receiving your comments on our product.

How would you rate this book?

[] Excellent [] Value for money
[]. Good [] Priced right
[] Poor [] Overpriced

Please tell us what software you would like to see produced
for your computer.

Put this in a stamped envelope and send to:

In the United States of America return page to:
Melbourne House Software Inc., 347 Reedwood Drive, Nashville TN 37217.

In the United Kingdom return page to:
Melbourne House (Publishers) Ltd., Glebe Cottage, Glebe House, Station Road, Cheddington, Leighton Buzzard,
Bedfordshire, LU7 7NA.

In Australia & New Zealand return page to:
Melbourne House (Australia) Pty. Ltd., Suite 4, 75 Palmerston Crescent, South Melbourne, Victoria, 3205.

e z —_—r

